

COMPUTER SCIENCE SERIES

APL
PROGRAMMING
AND COMPUTER
TECHNIQUES

Harry Katzan, Jr.
Pratt Institute

@ Van Nostrand Reinhold Company
New York Cincinnati Teoronto London Melbourne

Van Nostrand Reinhold Company Regional Offices
New York Cincinnati Chicago Millbrae Dallas

Yan Nostrand Reinhold Company Foreign Otlices
London Toronto Melbourne

Copyright < 1970 by Litton Educational Publishing, inc

Library of Congress Catalog Card Number 72-122671

Alirights reserved No part ol this work covered by the copyrights hereon may be reproduced or used in
any lorm or by any means—graphic, electronic., or mechamcal, including photocopying, recording.
taping. or inlormation storage and retrieval systems— without written permission ol the publisher

Manulactured in the United States ol America

Published by Van Nostrand Reinhold Company
450 West 33rd Street, New York N Y (0001

Published simultaneously in Canada by
Yan Nostrand Reinhold. Ltd

(514131211 10987654321

PREFACE

Recent advances in the design of computer systems and programming
languages have created a need for a state-of-the-art book on program-
ming and computer techniques. This book has two objectives. The first
is to present the APL language and terminal system. APL combines the
power and relevance of Iverson’s programming language* with the con-
venience of time sharing to provide an effective system for solving small,
intermediate, and large-scale problems. The second objective is to pro-
vide an introduction to computer techniques for scientists, engineers,
business analysts, and managers. One of the major difficulties, initially, is

a conceptual one of gaining familiarity with basic computing concepts

and recognizing possible applications. A significant portion of this book
is directed toward this end and toward the presentation of general in-
formation on computer systems and devices and on programming systems
and languages.

The APL language can be used by people with different backgrounds
and at different levels of experience. The material is organized accord-
ingly by presenting APL fundamentals, arrays and array operations, and
topics in programming as separate chapters. The user need only ac-
quaint himself with topics that are of interest to him. Several other high-
lights exist:

A liberal number of examples are included.

Most of the material is summarized for review and f

Three annotated APL terminal scripts are included to mterpret the
discourse between the computer and the user.

4. Five appendices, including a collection of APL programs and a
prose glossary of APL, give an idea of the kind of problems that can
be solved with the system and familiarize the reader with APL ter-
minology.

W b -

The book is composed of eight chapters and five appendices. The
first chapter provides an introduction to computation and covers: the
computer environment, numbers and the coding of information, types of
data errors, data organization, and operators and operations. Although
most of the material is known informally, it is not usually recorded in
an introductory and concise manner.

*K E lverson, A Progranuning Language, New York, Wiley, 1962

vi PREFACE

Chapter 2, “Programs and Algorithms,” is concerned with the essen-
tials of compauting and presents the following topics: the concept of an al-
gorithm, programs, flow charting, and decision logic tables. The informa-
tion is basic to computer programming and together with Chapter 3
provides the conceptual foundation required for effective computer
utilization. Chapter 3, entitled ‘“Basic Structure of Computers,” is de-
signed to give the reader a general familiarity with the computer and
answers questions which might exist in the mind of an *“inquisitive”
scientist or engineer at this point. Topics included are: machine funda-
mentals, machine operation, and arithmetic operations.

Chapters 4, 5, and 6 are the most important in the book. It is here that
the art of programming is firmly presented. The vehicle is the APL
language, and the material is organized such that APL is introduced as
well. For scientists, engineers, and analysts who have been exposed to
programming, these chapters along with the appendices should provide all
that is needed to effectively use the APL\360 system. Chapter 4, “Funda-
mentals of APL Programming,” includes: an introduction; arithmetic
and terminal operations; numeric constants; commands, statements, and
expressions; primitive operators; mathematical functions; and an an-
notated script of APL fundamentals. Chapter 5, **Arrays and Operations
on Arrays,” gently introduces the concept and use of arrays in computing.
The objective is to subordinate much of the detail, ordinarily associated
with programming, to the programming system itself. Topics covered are:
basic concepts, vectors and vector operations, matrices and arrays of
higher dimension, functions on arrays, and an annotated script of array
operations. The material increases in complexity so that the reader, if he
so desires, can “‘abort” his study once his primary goals are satisfied.
Chapter 6, “*Topics in Programming,” presents the traditional areas into
which computing is usually divided: defined functions, sequence and
control, input and output, and program checkout. The chapter concludes
with an appropriate annotated script.

Chapters 7 and 8 relate the basic computing techniques, introduced in
earlier chapters, to the computer systems and devices available com-
mercially and to the programming systems and languages available for
using them. The subject matter reflects the most recent technological
advances but is not oriented toward any particular computer manu-
facturer. Chapter 7, “Computer Systems and Devices,” covers basic
system concepts, computer systems architecture, mass storage, and
input/output devices. Chapter 8, “Programming Systems and Lan-

onaces.” covers the concent of an oneratine
guages, concept of operating system, oper
architecture, and the FORTRAN language.

The five appendices are for reference purposes. Appendix A, “APL

Programs,” contains a sample of operational APL programs. Areas

PREFACE vii

covered are: graph plotting, statistics, mathematics, and business. The
programs are intended to acquaint the reader with APL techniques and to

mracont < khfl‘l f\“ II(‘D“III l’ﬂf\l‘rlﬂl‘lﬂa A nn‘:nrl;v D “A Dl\ 1‘“ ki L2 el
FIWOLIIL a UUUy Ul udtlul ROUWICUEL. AppLiidia o, AL LA JUV, pru-

vides detailed information on a specific implementation of the language.
Appendix C, “APL Functions,” is for reference and describes the wide
variety of APL functions in a useful format. Appendix D, “APL
Alphabet,” presents information on the alphabet and keyboard arrange-
ment of the APL terminal system. One of the problems with most
glossaries is that many readers are not sufficiently familiar with the
terminology to use them effectively. Appendix E, ““Prose Glossary of
APL,” presents the traditional concepts in a narrative form so that the
reader can associate terminology with the context in which it can be used.

The book is organized for the professional reader and contains a liberal
number of examples appropriate to the matenal covered. It would also
be useful as a college or industrial textbook for a computer techniques
course in an engineering, natural science, or social science curriculum,
Used as a text, a term project relating to one of the categories of APL
programs might then be particularly appropriate.

Harry Katzan, Jr.

White Plains, New York
April 1970

ACKNOWLEDGMENTS

The author wishes to acknowledge numerous sources that added to the
quality of the manuscript. APL-MANHATTAN, a Division of Industrial
Computer Systems, Inc., served as the source of programs given in Ap-
pendix A. Special recognition is given to Messrs. K. E. Korn, J. H.
Lamb, and W. R. Newman, all of that company, for valuable assistance
and for the necessary computer time. Several authors have given permis-
sion to list their programs: Professor K. W. Smillie and Mr. E. M, Ed-
wards of the University of Alberta, Mr. A. D. Falkoff of IBM, and Mr.
W. R. Newman of APL-MANHATTAN. Their contributions are grate-
fully acknowledged. The authors of all programs could not be deter-
mined; however, their efforts are acknowledged as well.

Three knowledgeable people reviewed the manuscript and gave valu-
able comments and suggestions: Mr. M. B. Lurie of IBM and Professors
T. E. Cheatham of Harvard University and G. H. Foster of Syracuse
University. Mr. T. F. Epley, Professional and Reference Editor of the
Van Nostrand Reinhold Company, served as a continual source of ad-
ministrative support.

Lastly, but of prime importance, special thanks are given to my wife
Margaret, who typed the manuscript, and who did a notable job of
providing inspiration and moral support.

Harry Katzan, Jr.

CONTENTS

PREFACE v
ACKNOWLEDGMENTS ix
CHAPTER 1 | INTRODUCTION 3

1.1 The computer environment 3

1.2 Numbers and the coding of information 6
1.3 Types of data errors 14

1.4 Data organization 16

1.6 Operators and operations 17

1.6 Summary 20

CHAPTER 2 | PROGRAMS AND ALGORITHMS 22

2.1 The concept of an algorithm 22
2.2 Programs 24

2.3 Flow charting 27

2.4 Decision logic tables 34

2.5 Summary 37

CHAPTER 3 | BASIC STRUCTURE OF CO

3.1 Machine fundamentals 38
3.2 Machine operation 43
3.3 Arithmetic operations 46
3.4 Summary 56

v
W
o)

CHAPTER 4 | FUNDAMENTALS OF APL PROGRAMMING 57

4.1 Introduction 57

4.2 Arithmetic and terminal operations 59

4.3 Numeric constants 64

4.4 Commands, statements, and expressions 67
4.5 Primitive operators 8l

4.6 Mathematical functions 94

4.7 Annotated script of APL fundamentals 99
4.8 Comments on the remainder of APL 103

xi

xii CONTENTS

CHAPTER 5 | ARRAYS AND OPERATIONS ON ARRAYS 104

6.1 Basic concepts 104

5.2 Vectors and vector operations 106

5.3 Matrices and arrays of higher dimension 121
5.4 Functions on arrays 136

5.5 Annotated script of array operations 163

CHAPTER 6 |TOPICS IN PROGRAMMING

5.1 The realm of automatic computation 172

6.2 Defined functions 173

6.3 Sequence and control 190

6.4 Inputand output 200

6.5 Program checkout 205

6.5 Annotated script of topics in programming 210

CHAPTER 7 | COMPUTER SYSTEMS AND DEVICES

7.1 Basic systems concepts 213
7.2 Computer systems architecture 220
7.3 Mass storage and input/output devices 224

CHAPTER 8 | PROGRAMMING SYSTEMS AND
LANGUAGES

8.1 The concept of an operating system 230
8.2 Operating systems architecture 237
8.3 The FORTRAN language 246

Bibliographical References 263

APPENDIX A: | APL PROGRAMS
APPENDIX B: | APL\360
APPENDIX C: | APL FUNCTIONS
APPENDIX D:| APL ALPHABET

APPENDIX E: IPROSE GLOSSARY OF APL

INDEX

172

213

230

267

297

305

311

313

321

APL Summaries, APL Tables, and APL Programs

Summary of vector operations 119
Summary of fundamental array operations 135
Summary of functions on arrays 160

Table of primitive operations 93
Table of mathematical functions 98

Program |. Graph plotting (GRAPH) 269

Program 2. Descriptive statistics (DSTAT) 272

Program 3. Mean, variance, and standard deviation (MVSD) 273
Program 4. Histogram plotting (HIST) 273

Program 5. Binomial distribution (BINOM) 274

Program 6. Poisson distribution (POISSON) 276

Program 7. Coefficient of Correlation (CM) 277

Program 8. Regression (SR) 278

Program 9. Analysis of variance (ANOVA) 280

Program 10. Critical path method (CPM1) 282

Program 11. Matrix inverse (INV) 282

Program 12. Determinant of matrix (DET) 288

Program 13. Polynomial curve fit (PCF) 289

Program 14. Numerical integration (INTEGRAL1) 291
Program 15. Maximum of a function (MAX) 292

Program 16. Utility programs (DEG, RAD, RND, SIG) 294
Program 17. Business (COMPINT, INVEST) 295

Xiii

APL PROGRAMMING
AND
COMPUTER TECHNIQUES

(
(

1.1 THE COMPUTER ENVIRONMENT

The processing of information involves some well-defined functions, re-
gardless of whether the processing is performed by manual, mechanical,
or electronic methods.

Information must initially be recorded. The information, or data, can
originate in many ways, such as the reading of a dial, the recording of
an event, or the extraction of a value from a table. The information
can be recorded on a medium such as punched cards or tape by a
human operator or be collected on an electromechanical device, such as
a magnetic tape, which is part of the experimental apparatus. If the
information is recorded in a coded form, then a hard copy, such as a
typewritten sheet, is usually produced for human use.

Information must be transmitted to other locations. In most cases, informa-
tion is processed in a different location from that in which it was re-
corded. Traditionally, manual methods were used for transporting
documents and records. Modern telecommunications facilities have
reduced the need for manual methods and have provided the user with
direct access to the processing facility.

Information must be stored. It may be stored temporarily during process-
ing or be stored permanently. The storage may involve a variety of
forms and several transactions. The information may be stored in the
same form as originally recorded or it may pass through several devices

3

4 INTRODUCTION

during processing and eventually reside permanently on a direct-access
mechanism. For example, input data may be typed in at a remote
terminal, stored in a computer during processing, and then saved
permanently on a disc storage volume. Results of the processing may
be stored in a coded form and presented to the user as a typed report.

Information is eventually processed and results are obtained. In some cases,
a small amount of data is entered into the computer, a large number of
calculations are performed, and a small but significant amount of out-
put is obtained. In other cases, a large amount of data is reduced to a
few meaningful statistics. In yet other cases, information is stored for
later retrieval.

Processed information must be made available to the ultimate users. The
processed information may take the form of a printed report, an up-
dated file, or the control of a physical process.

Later, it will become evident that a computer is organized in somewhat
the same fashion, with devices for input-output, arithmetic, control, and
storage.

Conceptuol Description of a Digital Computer

Essentially, the electronic computer is a system for accepting, judging, and
otherwise processing or usefully modifying information. Thus, it extends
our brainpower as other man-machines enlarge muscle power.

Somewhat like its human inventor, the computer operates on symbols.
That is, it operates on symbolic representations of physical or abstract
information, which can take the form of numeric data or a coded repre-
sentation of characters or events. The computer is said to operate on
operands which are usually regarded as sequences of digits. The primary
arithmetic operations are addition, subtraction, multiplication, and divi-
sion for which the operands are interpreted as numeric data. Operands
are also regarded as numeric for certain comparison and logical opera-
tions. Most computers include nonarithmetic operations for processing
coded information, for control and decision making, and for input and
output.

In general, the operations provided by digital computers are elementary
and do not directly represent complex operations such as differentiation,
integration, or even summation. Thus, complex operations must be syn-
thesized from sequences of elementary operations. The great speed of
modern computers has enabled increasingly sophisticated sequences of

3 tad and hae nraatad a naad faer a
clementary operations to be constructed and has created a need for a new

type of human activity, computer programming. This book endeavors to
put the power of the computer into the hands of the scientist and engineer
through programming.

1.1 THE COMPUTER ENVIRONMENT 5

Major Computer Applications

From space flight to data analysis, computers have become involved in
the everyday life of most scientists and engineers. In spite of a wide
range of diversity, the vast majority of computer applications can be
placed into some well-defined classes. The classifications tend to be
independent of how the computer is accessed, that is, whether the scientist
or engineer uses the machine via a remote terminal, whether he submits
his work locally on punched cards or tape, or whether the computer is
intimately involved with the physical apparatus of an experiment or
process. The classifications tend to be more conceptual than actual, and a
given problem could conceivably be placed in two distinct categories by
different investigators.

Descriptive Computing. This type of computing provides the user with
more information on a subject, such as the area under a curve, the trajec-
tory of a space vehicle, or the design parameters of an airplane or road.
The object under consideration is usually defined mathematically and the
formulae are normally used in the computer calculations.

Dota Analysis. This type of computing often involves statistics and per-
mits the scientist or engineer to draw conclusions from actual or experi-
mental data. This category also draws heavily upon mathematics; how-
ever, the calculations frequently involve simple comparison operations,
for checking tolerance conditions, and logical operations, for determining
combinations of events.

Simulotion. This category concerns mathematical or procedural models
of physical processes or events involving the interrelationship of inde-

A 1inhl Th £ ala ~AAdal A
peﬂueﬂt variables. The use of simulation models pei’mua decision ...akcrs

to evaluate alternatives without having to implement real-life systems.

Optimization. This category involves finding the best solution to a prob-
lem of a given type. Research in mathematics and operations research
has uncovered a collection of prototype problems, for which solutions are
known. Thus optimization amounts to determining which of the proto-
type problems applies to a given situation and using the techniques
tnherent therein.

Experimental Process Conirol. The operation of many physical processes
and laboratory experiments can be aided by using a computer to collect
data or provide real-time control of the process. In applications of this
type, one of the input or output functions is usually a sensory or control
device.

Dato Processing. Like its business counterpart, scientific data processing
involves the creation and updating of files of information and the genera-

6 INTRODUCTION

tion of reports from these data. The files usually contain numerical data
from which summary calculations are made and with which data analysis

fo marfa e o
13 peliornilicu,

Information Retrieval. Many applications in science and engineering re-
quire that case histories be maintained or results stored such that they
can be retrieved on a demand basis. Mass storage devices are used to
store the data to which the user has access with remote terminals or by
using traditional batch processing techniques.

Obviously, other applications of computers exist that cannot be classed
into the categories given above. It follows that any problem which can be
defined can be programmed. The word “‘defined” is important here and
means that the solution to the problem can be broken down into a series
of steps that can be represented as a sequence of compuler instructions.

The Capabilities ond Limitations of Computers

Computers have some well-defined characteristics which make them use-
ful for certain applications and not for others. A computer performs
repetitive operations very rapidly and with great reliability. Yet, it re-
quires that all steps in the solution of a problem be stated explicitly.
Thus, applications requiring intuitive and adaptive behavior are not
generally amenable to computer programming. Recent advances in
machine intelligence have widened the scope of computers considerably,
and as computer technology evolves as a science, it is likely that more
intuitive and adaptive behavior can be programmed.

1.2 NUMBERS AND THE CODING OF INFORMATION

In the outside world, symbolic information can be conveniently recorded
by the digits O through 9, the letters of the alphabet, and special characters
such as the parenthesis, the dollar sign, and the decimal point. The com-
puter, by design, stores the same characters in a form chosen for the in-
ternal representation of data. In some machines, the internal coding
scheme is binary, and in others it is a form of binary coded decimal.
Although the scientist or engineer need not necessarily be aware of the
internal coding scheme, he must be familiar with the forms and properties
of decimal numbers and how they are coded in punched cards or tape.

Number Representotion

In performing ordinary arithmetic, most people deal with sequences of
decimal digits, a decimal point, and possibly an algebraic sign. Actual
arithmetic is performed using well-defined rules for signs and decimal
points and by using digit-by-digit operations on the numbers. Numbers

of this type are termed fixed-point or decimal numbers. Thus, a fixed-

1.2 NUMBERS AND THE CODING OF INFORMATION 7

point number x is represented by an expression of the form
x=n+0.d| dzdj. -

where n is a whole number and each d; 1s a digit between 0 and 9. An
integer is a fixed-point number with no fractional part and is treated as a
specific type of operand in some programming systems. Integer arith-
metic has some properties of interest here. When integers are added,
subtracted, or multiplied, the result is a whole number. The same holds
true for division. If the division of integer a by integer & is defined by

a=q-b+r, with r<b

then the result is the quotient ¢ and the remainder r is lost. Thus, in
integer arithmetic

P annliag
u alJlJll\-!D

basis. With the APL programming system, the user need no
cerned with integer arithmetic; with other systems, such as FORTRAN,
integers are regarded as a specific type of operand.

Although fixed-point arithmetic is satisfactory for some calculations,
it is not convenient for representing very large or very small numbers.
For example, Young’s modulus, which is 30,000,000 pounds per square
inch, is frequently written as 0.3 x 10 to facilitate computation. A similar
situation exists in handling the range of numbers from large to small in a
computer. To avoid carrying a great many digits and to eliminate the
effort of keeping track of the location of the decimal point for these
numbers, a floating-point representation is used. A common procedure is
to maintain the seven or eight most significant digits of a number plus a
two- or three-digit exponent or characteristic to indicate the proper posi-
tion of the decimal point. The fractional part of a floating-point number
is frequently called the mantissa. For example, the number

—.00000061957533

can be expressed as
—.61957533x10°¢

However, this representation requires carrying two signs: one for the
exponent and one for the fraction. This is inconvenient for computers
which have only one sign associated with a storage location. Therefore, a
common practice is to bias the exponent by adding a positive base value.
Using a base value of 50, the exponent in the preceding example becomes

111 aA Udoae VAl Ul W, LIIC CA pweaial 282 L2 v PR lilas FALRLD Py MeEwUIIIILS

50+(—06)=44 and the internal representation of the number becomes

[- | 44 [61957533 |

8 INTRODUCTION

Normally, as implied here, the exponent and fraction are each repre-
sented by a sequence of digits in the same computer storage location; the

PSS R L. PR, | e OO S e R,

circuitry of the machine makes whatever adjustments are necessary during
the execution of numeric operations.

The ordinary user of computers need not be concerned with the in-
ternal form of numbers and is aware only of their external representation.

The subject of numeric constants is covered in detail in Section 4.3,

The Accuracy of Floating-Point Numbers

In preceding examples, numbers to the base ten were used. It should be
recognized that in many machines, the internal representation of data is
not to the base ten but to another base such as two or sixteen. Using a
base b, a floating-point number is written as

N=nxb*

where n is the fraction and e is the exponent. Most computations are
performed with the fraction in normalized format which implies that the
base point is considered to be immediately to the left of the first nonzero
digit.

In computers, only a finite number of digits can be used to represent
numbers that are directly usable as operands by the circuitry of the
machine. Thus, all numbers are restricted to a fixed range of values and
most numbers contain a round-off error in their low-order positions. For
example, the six-digit sequence .666666 more accurately represents the
fraction %/ than does the four-digit sequence .6666. Internal to the com-
puter, the accuracy and range of values is determined by the number of
digits allocated to the exponent and to the fraction. The number of digits
in the exponent determines the range of vaiues and the number of digits in
the fraction determines the accuracy of the values. The following basic
relationships can now be stated:

I. If k digit positions are used to represent the fraction, then the
normalized fraction n satisfies the condition

b'<|n|<i-b"
or is zero.

2. If /1 digit positions are used to represent the exponent e, then

le| <b'-1

(FF]
-
famir}
(o]

ating-point values N are restricted to the range

b6 D < | N | <(1-b*)be" D

1.2 NUMBERS AND THE CODING OF INFORMATION ?

In a decimal machine, for example, where 6=10, k=10, and /=2,

A< | nl £.9999999999
e<99
10-'%< | N | <(1-107"9)10%

Coding of Information

It was mentioned earlier in this section that a computer operates on
symbolic representations of actual data and that these data may exist in
a coded form. For entry into the computer, data and programs, as well,
must be coded in a medium of some kind, such as punched cards or paper
tape, or be typed in at a remote terminal. In the latter case encoding
takes place during the transmission of information, but it is transparent
to the user. During the input process, the external representation is con-
verted to internal representation, whether it be a numeric form or a coded
form. The conversion is done by a combination of hardware and software
facilities. For output, the process is reversed.

Figures 1.1 and 1.2 give an example of a punched card and a segment

Special

Drgits Lefters Characters

0123456709 ABCDEFGHIJKLMNOPQRSTUVWXY] L.m-3s/ %be
“ !I L & !I 12 Punching
| Position
ﬁ ﬁ ﬁ 11 Punching
il | Mevm
focpdoone q0000000 + !n poooodonoofqe sooooone
11348342908 SRNNANBS. 11 FUNNNITHRUENEPRN 1 NRBRNNTHENRN
'Illllllll 1min T T L IIIIIIIIIIT 1 11111111
!?12!21!211 2222122122 H 4 2222222121213323%2 22222212
13113311101 113333310} 1 A 1]l 3333333334204 ﬂ 1131331}
d444040008041]]44 lllllllllllu 444 lllnl (XXX ERERR LR Y IL] llllllllll
§555585585548¢8 SSSSSSSSSSSSU 5555&4 qssshyaqyssssssss88y9s44s §5555485§
sbssscconcosooflqq Olﬂlllllllﬂhtl oooits n lllllﬂill"llllllll Seqeaqasco0sb68s
IR R R R R AR R R R I SRERARRRRARRREE LR R R EE R R R LR AR R R AR R R R RERRARARARA
Ollﬂliﬂllilllllﬂi 0000000.!00.".“ ll‘ll.lu TITLNY] sooocoosoofiolBe ﬂé.l.ll.l‘
l"llllll.ll.ll'lul'..‘.li.illl.l'nli.‘lll.!ilil.i. goossoodon000000090000000000
T2 343 T N I NHRUUAN IR NN NSRRI RRNANTRNIRAQREARITESRNSNHRRTRERUERHRNDNREBTINNNINNI RN

Fig. 1.1 Punched card. (Courtesy of IBM Corporation.)

10 INTRODUCTION

—a -
o w S £ o o8
E Haw 2 L]
':Alcl:-u'ﬁﬂlJHMNOIGISIU';wnvza.GE = 3 [] 9064 $5F 3 & a,,.;
1-lese e e T ERIID [i [ese eee e saee
-|oe @ * adee a8 oS00 L] - (oe » * 2909 ott tt. .
3-[0° e e e e es 00 o 00 se o 3 |70 e e ee e 00 00 0 00 00 o
i—le ene 0 98 030 . » [] .:o :.".; T .. .
=l @ *e *h 88 & BEGNS [d e . e 20% & S0dee

{A) Five Channel Tape

TF

=aa%saaaqtesassanan®

=20t adeeata LA LLLLL L L] aa +8

—a e a8 ... ® ae o & o0 o|ee| ilan asee . a4 sl @

—a a8 as L L .“."..‘..'..‘ '......
oocoioa-tatot.dtatataataoo.tilotat4oo0.ooooooo--!iooooaniiiontooi

—& Ll L L] ssae aaee Ll Ll] asese +a9e a8 _aass

-8 a8 e 48 a8 a8 aas L1 IR T ate asse satsnas

=448 & & & 8¢ & % 4 4 & &4 4 8 2 a4 A S & Ak * esaa » e

(B) Eight Channel Tape
Fig. 1.2 Punched tape. (Courtesy af IBM Corporation.)

of punched tape; Figure 1.3 pictures a communications terminal. As
described in Table 1.1, punched cards come in two forms: Binary Coded
Decimal (BCD), often called Hollerith cards, and Extended Binary Coded
Decimal Interchange Code (EBCDIC). The codes are quite similar and
are produced by the IBM 026 and IBM 029 card punches, respectively, as
well as a variety of on-line card punches. Table 1.1 also contains the
American Standard Code for Information Interchange (ASCII), which is
authorized by The United States of America Standards Association.
Binary and hexadecimal equivalents are given for EBCDIC and ASCII; a
representative set of binary and octal equivalents are given for BCD.

r d—ua?._.__ -.
%-*/

Fig. 1.3 Computer terminal device. (Courtesy of IBM Corporation.)

11

1.2 NUMBERS AND THE CODING OF INFORMATION

10017101 00010111 8d A 000110 0t 8V 8-0 A
0001101 [T100111 Ld X 1010 LT vV L-0 X
[T10101 OTI00ITT 94 M or1010 97 (444 9-0 M
orroiol (0100111 ¢d A 01010 Y4 vV S0 A
1010101 00100111 td n 001010 ve A4 -0 n
0010101 [TO00TTI td L 110010 £ IV £-0 L
1100101 01000111 cd S 010010 c? v 0 S
0100101 10011011 6d b | 100101 s 189 611 b |
1000101 00011011 8d O 000101 0s 8d 8-11 0
0000101 [TIOIOIT Ld d 111001 Ly 17yd L1l d
[TT1001 O110I101T 9d @) 011001 9% crd 9-11 0
OI11001 0101011 ¢d N 101001 197 1vd ¢-11 N
011001 00101011 124 o\l 001001 147 td 2 W
00171001 1001011 £d 1 110001 £ Icd €11 1
1101001 01001011 a P | 010001 A4 d el .|
0101001 10001011 1) 100001 84 g I-11 [
1001001 10010011 6D I 100111 L Isvd 6-Cl |
0001001 00010011 8D H 000TI11 0oL svd 8-CI H
[T10001 ITI00011 LD D 11011 L9 [cvvd LTI D
0110001 01100011 9D d or1011 99 vl 9-CI |
1010001 10100011 99 d 101011 S9 Itvd ¢-Tl |
0010001 00100011 O ad 001011 79 tvd -l d
1100001 11000011 £ 9 or1011 €9 Icvd ¢-Cl 0
0100001 01000011 (49 d 010011 a9 wvd i d
1000001 10000011 D \4 100011 19 Ivd 1-T1 A4
apoonq-y) davurg (pwpoapvxap pav) DIADGT [oquds dvuig o100 2P0 DG (PO ADF joqudg
Asvurg 20ao49 2adOgd
IIOSV
tNOILYWYIO4NI a3a0D ('L A8vl

INTRODUCTION

12

0111010 11010010 qav 8-¢-0 o111 t£L 178vd 8-£-C1
0011010 11010110 49 8-€-0 ‘ [orio 133 18V 8-€-0 ‘
1001010 10111010 as 8-G-TI 0 O0IIT1 vL revd 8-t-Cl (
0001010 10110010 ayv 8-5-T1I) 001110 € 1224 8-t-0)
[TT1010 10000110 19 -0 / 100010 1T v -0 /
0101010 OOITIO0I0 26 8-t-11 * 001101 123 td 8-t-11 *
1011010 000007110 09 I - 000001 oy 2| I -
[TO1010 OIT110010 qd¢ 8-9-T1 + 000011 09 vd 4! +
I0TITI0 OIITIT10 qL 8-9 = 10100 £l 18 8¢ =
0000010 00000010 ot (sayound ou) (aoeds) (00000 00 (spooou) (sayound ou) (aoeds)
0001110 10OTTITT 64 6 100100 Il 18 6 6
000ITIO O0OIITIT 84 8 000100 0l 8 8 8
IT10T10 TTTOTIT1 Ld L [T1000 L0 1<t L L
OT10110 OI110111T1 94 9 011000 90 (47 9 9
1010110 1010TT1I ¢d G 101000 S0 It S ¢
0010110 001011V 4 14 001000 ¥0 14 14 14
1100110 1TO0NTII td t 110000 £0 1T £ t
0100110 O1001 111 cd [4 010000 <0 < < [4
1000110 1000OTITI 4 [100000 10 | [I
0000110 0000ITTI 0d 0 010100 cl 8 0 0
1100010 TTOLITI0 gL # 110100 g1 178 8¢ #
- O0ITITIO oL o 001100 14l 121 8P 0]
0010010 T1OI1010 g¢ $ 110101 £S 178d 8-£-11 b
0101101 10010111 6d Z 100110 £ I8V 6-0 Z
(apoo nq-y) Aapurg poundappxapy pin) DIAIGH [oquAs Lipurg 00 P00 D8 (PP AOF joquidg
Adivurg AOgH 21083
oSV
(panuyuod) || 318Vl

13

1.2 NUMBERS AND THE CODING OF INFORMATION

waisAs 01 WIIsAS WO I3YIP PUP S3pOd> (] 2Yl 01 pUOds31I6d $3p0d AIPUIQ PUE [RISO) p

‘Supaw €D

-1sAyd swos £q 10 Ajjeonoudew pap10dal 3q UBD YIYM ‘| ZHRVE [0qWIAS [RucINSed Syl JO UOHEUIQWOD P AQ Pa1U9sa1dal SI PIEP JO 121OPIPYD P *2p0d (]Og Uf>
paysundun 1j3] 21E SMOI I13Y10 [|P "m0 | Y1
pue mol 7 ay1 w1 ysund e Aq pajussaidar si y 19119 Ayt *a|dwexd 104 PIEd AU JO UWN|O3 UAIZ B 10) mOd PalEdIpUl 3y ul ysund e jussasdad staquinu Y| q
patiiwiad jou 21p S[OQWAS Ytoq ‘195 2U0 Ul =Yl FULIEIIPUT PAIEdI|ANP 21P SIPOI JWOS B

{rriio
TITTHI01
0011110
OITT110

0110010

0101110
1101110
1010010
1110010

[1T10110
10110110
00110010
OITIOT1O
1ITI0010
00001010
IRER RN
1011110
Oririolo
00110110
[OITTTIO

49
as
or
49
dv
0¢
4¢
Vi
49
9
al

8-L-0
860
8-l
8-9-0
8-L-11
4
8-L-11
8-C
8-9-11
840
8-S

010111
OTITIT
011100

000011
101100
011101
001110
001100

L
9L
91

09
Sl
9¢
123
14!

8vd
wsvd
s

vd
18
el
12:24
8

0-T1
8-9-T1
89
4
8-
8-9-11
&0
8-t

[
(yeaiq) —
>

<
_
?
—

pA
(s10nb) ,

14 INTRODUCTION

Punched tape comes in five-, seven-, or eight-channel varieties, and several
coding schemes are used. A standard BA8421 weighted code is given.

N tha rlhorantare manot Fera~ainntly wiea A aniantifi~A e AncInAasaEino

Vlll_y I.llb vildaldwivlo 111UDL llb\lublltl_y UusCa in SCIChiuic Of CIIEIIICCIIIIE Com-

putations are listed, although with ASCII and EBCDIC codes, 27 (or 128)
and 28 (or 256) different characters can be represented, respectively.

1.3 TYPES OF DATA ERRORS

The subject of data errors is of great concern in arithmetic computa-
tions for several reasons, which are not always obvious to the occasional
user. First, as mentioned in previous sections, arithmetic is performed on
a fixed number of digits. Thus, when the partial results exceed the size
of arithmetic registers, values must be rounded or truncated. Next, small
errors tend to snowball. Because of the speed of most computers, ex-
tremely long sequences of calculations can be performed. Small initial
errors may significantly affect final results. Lastly, logical decisions in
computers are effectively made on the relative values of numbers, stored
internally. When the possibility of errors in data 1s not considered, the
actual flow of a computer program can be altered—perhaps by a few
meaningless digits.

Absolute and Relative Error

Most estimates, measurements, and calculations involve errors of some
kind. They are usually classed as being absolute or relative. The sources
of errors are considered in subsequent paragraphs.

Consider a number x approximatedf by the number x*. The difference
E=x—x* is termed the absolute error and the ratio E+x is referred to as
the relative error. In general, there is no prior knowledge whether £ will
be positive or negative, so the absolute value must be used. A realistic
example might be to test if the absolute value of the absolute error is less
than a prescribed amount ¢; if so, then a specified procedure should be
performed. If not, then an alternate procedure is invoked. More speci-
fied, the example could be expressed as:

if | E | >e then do procedure-1
otherwise do procedure-2

In many practical cases, the relative error is a better measure of the sig-
nificance of an error than is the absolute error. A relative error test ap-
plied to the above example would be stated as:

if | E+x | >ethen do procedure-1
otherwise do procedure-2

t1n this context, the words represented or estimated would serve equally well

1.3 TYPES OF DATA ERRORS 15

Sources of Error

Data errors can arise in a variety of ways and deserve consideration in any
numerical problem. Ordinarily, errors originate from some human activ-
ity such as measurement or programming, although in some cases they are
caused by the nature of the computing hardware itself.

Initial Error. This type of error is the most frequent and results from
variations in data recording or in taking measurements. If x is the true
value of a data reading and x* is the reading used in computation, perhaps
reflecting an error in measurement, then the initial error is x—x*. Initial
errors are significant since they affect computed results regardless of how
sophisticated the computer program might be.

Rounding Error. This type of error results when the less significant digits
of a quantity are deleted and a rule of correction is applied to the remain-
ing part. For example, pi, 3.14159265..., rounded to five significant
digits, is 3.1416. An accepted rounding procedure is as follows: If round-
ing is to take place in the nth digit, then add 5 to the (n+1)st digit and
truncate after the nth digit. Truncation is covered next.

Truncation Error. Truncation is the gentle art of chopping off a number
after a certain number of digits; the resulting error is a truncation error.
Truncating pi, in the preceding example, after five significant digits would
yield 3.1415. Another common source of truncation error results from
chopping off all terms in an infinite series expansion after a particular
term. For example, cutting the series for e* at
.e*=l+x+x—2+x—3
2! 3!
gives a truncation error-—sometimes called a residual error—for series
approximations.

Propagated Error. Errors accumulate or build up during computation.
If x is the true value of a variable and x* is used during computation,
then f(x)—f(x*) is the propagated error.

Floating-point arithmetic with fixed length registers contains many pit-
falls for the unwary programmer. By its very nature, floating-point arith-
metic is inexact. Most applications require only limited precision, so the
vast majority of users are not concerned with the problem. One of the
major problems of numerical analysis, on the other hand, is to determine
the accuracy of computed results. A good rule of thumb is that floating-
point multiplication and division do not significantly affect the relative
error but floating-point addition and subtraction do, especially when x is
nearly equal to —y for x+y and x is nearly equal to y for x—y. In fact, the
associative law:

x+(y+z)=(x+y)+z

16 INTRODUCTION

does not hold for certain values of x, y, and z. When rounding to four
digits after each operation, for example, it is easily shown that:

(31.58+88.43)+9.348=31.58+(88.43+9.348)

1.4 DATA ORGANIZATION

As a general rule, mathematics deals with symbolic quantities. The con-
cept has enabled basic principles to be developed which apply to both
theoretical and practical applications and which exist independently of a
particular problem under consideration. The practice of representing
quantities symbolically has found its way into everyday language, and the
use of 4, B, C’s and x, y, z’s has become an everyday occurence. Natural
language is frequently inadequate for expressing a complex idea, whereas a
symbol or a mathematical expression can often summarize what would

take many qualifying phrases. This is an application of what is called

discursive mathematics, an area which utilizes the notation but not the
underlying theory of modern mathematics.

The idea of referring to operations and operands symbolically (i.e., by
name) is also useful in computing and is a significant feature in most com-
puter languages. Symbolic programming, as it is sometimes called, has
contributed to the generality with which programs can be written and has
made it easier to do so.

In programming, a symbolic name is most frequently used to denote a
variable or a parameter, although in some cases it is used additionally to
name a constituent of a computer language itself. The discussion here
concerns data and how they are named and organized. Constituents of
computer languages are covered in later chapters.

Scalars and Variables

A single item of data is known as a scalar. It can be expressed as a
constant, in either a fixed-point or floating-point form, or as a variable. In
computing, a variable names a data element, the value of which can change
during execution of a program. Thus, a variable which names a scalar is
termed a scalar variable. Most systems for programming contain facilities
for defining and using variables and also provide for a variety of data types.

Arrays, Subscripts, and Indexing

It is often convenient to group data elements with the same characteristics
and treat them as a single entity. Familiar examples are ordinary vectors
and matrices. In general, the concept is extended to an »-dimensional
ordered collection of elements which is termed an arrgay. Only the array
itself is given a name, and an individual data element is selected by giving
its relative position in the array.

1.5 OPERATORS AND OPERATIONS 17

Consider, for example, the array 4 defined as follows:

a,-x a, -1 Qo a1 42
a;-2 Gz Q0 Q2 422
a_,; 43 _, dip Q3 Ay
Ay_2 Q4,1 Qap Qg1 Q42

It has several properties of interest. The first is the number of dimensions,
of which it has two: a row dimension and a column dimension. Each
dimension is further characterized by a bounds and an extent. The bounds
of a dimension are the beginning and end of that dimension and determine
the manner in which elements are referenced. The extent is the number of
elements in a dimension, independent of how they are referenced. Thus
in the array A4, the row bounds are (1:4) and the column bounds are
(—2:2). The row extent is 4 while the column extent is 5.

A subscript is a quantity used to select a data element of an array. In
ordinary mathematics, a subscript usually assumes its literal definition
(e.g., a,,,) although superscripts are frequently used. Computer input is
restricted to linear sequences of characters so that a substitutive conven-
tion 1s required. The most widely accepted convention is to enclose sub-
scripts, separated by a punctuation character, in parentheses or brackets.
Thus, A_,; would be represented as A(—2,1)or A[-2;1]. Ordinarily, a
subscript may be a constant, a variable, or an expression; in either case,
the accepted practice is to reduce its value to an integer before the selec-
tion of an element of an array takes place.

Very closely related in concept to that of subscripting is the notion of
indexing. It is frequently desired to count the number of times that a given
portion of a program has been executed and to maintain the counter as an
index variable, which can additionally be used as a subscript when neces-
sary. It is customary to use a subscript (or index) in both ways, giving it
significance as a spacewise indicator and a timewise indicator, as well.

A great many programming problems can be greatly simplified if the
data are organized as an array. One of the outstanding features of the
APL* programming system is that it permits operations to be performed
on entire arrays thereby subordinating much of the detail usually associ-
ated with computer programming. APL is considered in Chapter 4.

1.5 OPERATORS AND OPERATIONS

The concept of a function is basic to mathematics and is frequently used
in everyday discourse. It is customary to hear, for example, that the cost

*APL is an acronym for A Programming Language, based on K E. Iverson, 4 Pro-
gramming Language, New York, John Wiley & Sons, Inc , 1962,

18 INTRODUCTION

of a certain product is a function of its weight or its volume. A great
many values are a function of several variables, similar to the way in
which the cost of | li'v'ii'ig is a function of the cost of moncy, the level of un-
employment, the amount of government spending, etc.

In computer programming, an elementary function (such as addition) is
termed an operator. It is elementary in the sense that it cannot be con-
structed from other elementary operators. The term function is reserved
for a well-defined sequence of calculations composed of operators and

other functions.

Monadic and Dyadic Operators

The ordinary operations of arithmetic, such as addition and multiplica-
tion, require two operands (e.g., x+y) and are classed as dyadic operators.
Dyadic operators are further characterized by the fact that the operator
separates the operands, as in x+y. Thus if [denotes the dyadic maximum
operator, then max(x,y) would be expressed as xIy.

It is possible to define, on the other hand, operators, such as negation,
which require only one operand. For example, negation, which is fre-
quently defined as*

—x=0-x

is @ monadic operator and is characterized by the fact that it requires one
operand which is preceded by the operator symbol. Similarly, the mo-
nadic absolute value operator, ordinarily represented by double bars
(i.e., | x [), can also be denoted by a single verticle stroke; it is written and
defined as

fx=xr(-x)

Arithmetic Operations and Expressions

Mathematical notation permits several operators to be combined in the
same expression; for example

axb+13+c

The concept has been included in most computer programming languages
and permits the specification of complex sequences of calculations in a
notation familiar to the user. The order in which operations are executed
is of particular interest. First, parentheses are usually permitted and
indicate groupings such that expressions within parentheses are executed
before the expressions of which they are a constituent part. The concept
is obviously extended to as many levels as necessary. The case where

*The symbol = should be read *is defined as.”

1.5 OPERATORS AND OPERATIONS 19

parentheses are not used requires a second convention. One of two
methods is ordinarily chosen. One method assigns a hierarchy to the

Anarntare on thaot tha AnaratAare with tha arantact hiararchy ara avasrntad

UPDIGLUID oV l-llﬂl- L1l UPUIG&UID wiiil tll\u sl\-«at\vbl Nnici alvily 4alv vaviuilva

first. If, for example, multiplication takes precedence over addition, then
10=2x3+4

The other method involves executing the operators from right to left or
left to right in a sequential manner. Thus if right-to-left execution is
selected, then

14=2x3+4

A choice between the two methods requires a study of basic concepts.
APL permits monadic and dyadic operators to be defined in a context
where the assignment of hierarchy is not feasible and has adopted a
right-to-left rule for the execution of operators.

Comparison Operators

A familiar example of a dyadic operator is the comparison operator,*
which compares the two operands algebraically. The result of a com-
parison operation is a truth value with | representing true and 0 repre-
senting false in most systems. Thus if x= -4 and y=6, then

A A
w e e e e
Il

VoIV

O R VRV VIR
me

*

where the operators are defined as

less than

less than or equal to
equal to

greater than or equal to
greater than

not equal to

A A

VIV

Logical Operators

Logical operations are frequently used to determine the truth of two or
more assertions and can be combined with comparison operations to form
expressions in much the same way that arithmetic expressions are formed.

*Frequently called a relational operator.

20 INTRODUCTION

Two dyadic operators, and (denoted by A) and or (denoted by A), and one
monadic operator, not (denoted by —~) are generally used and are defined

ae fAllAwae-
QA LULIUYY Y,

1. AvB is true if either A is true or B is true or both; thus
AvB=lifandonlyif A=10orB=1.

2. AnBis true if both A and B are true; thus
AaB=1ifandonly if A=1 and B=1.

3. ~Aistrueif A is false; thus
~A=11ifand only if A=0.

The following logical expression combines logical and comparison
operators in the manner stated:

((x>y)A(z=w))ru

and would assume the value true (e.g., the numerical value 1), for example,
when x=4, y=3, z=10, w=10, and u=1. Obviously, a whole family of
values for the given variables would also give the expression a true value.

1.6 SUMMARY

Although advanced programming and operating systems have made it
easier for the professional programmer and the occasional user to ef-
fectively utilize the digital computer, there still remains some introductory
material which must be reviewed. The need for an introduction is more
the result of a changing emphasis than a lack of basic knowledge on the
part of the reader. As in any other field, technological advances create an
interest in more subtle problems yet eliminate many of the details which
previously shieided them,

In developing a system or simply a program, it is important to recognize
the basic functions which are usually involved: recording, transmission,
storage, processing, and reporting. Even though the same functions are
involved in manual processing, it is necessary to relate them to the digital
computer and to the major classes of applications: descriptive computing,
data analysis, simulation, optimization, experimental and process control,
data processing, and information retrieval. Obviously, the major applica-
tions exploit the capabilities of computers but implicitly indicate their
limitations, as well.

Computers manipulate information which is represented numerically,
and the internal and external forms that these data can assume must be
defined. A study of data also requires that the various types of error be
given and related to the source of these errors: initial error, rounding
error, truncation error, and propagated error.

1.6 SUMMARY 2]

Most programming systems rely specifically on the manner in which
data are organized and the operations that can be performed on them.

The capability for organizing data over a large repetoire of operators
facilitates programming and reduces one of the major problems in com-
puters—the man-machine interface.

After this brief introduction, the experienced user may go directly to
Chapter 4 and the APL programming system. The curious reader may
wish to explore Chapters 2 and 3 to gain an intuitive feeling for programs,

algorithms, and computers.

N
O

>
S

O 0
G
(7)) ;D

> U
-

2.1 THE CONCEPT OF AN ALGORITHM

One of the concepts fundamental to computing is that of an algorithm.
The term is used in a variety of contexts but is rarely defined—even
though the idea is deeply rooted in mathematics and the origin of the
word stems from the time of the ancient Arabic author al-Khowirizmi
(c.825).* Itis conveniently defined as follows:

An algorithm is a list of instructions specifying a sequence of operations
which will give the answer to any problem of a given type.

Thus, by definition, the notion of an algorithm seems particularly ap-
propriate for expressing numerical problems, which are characterized by
the fact that most instructions which need be executed can be constructed
entirely of elementary arithmetic and logical operations.

The General Nature of an Algorithm

Generally speaking, an algorithm is a sequence of steps leading to the
solution of a given problem; however, one feature distinguishes it from
an ordinary procedure or list of instructions. The distinguishing feature
is that an algorithm is designed to operate on data that are not known
beforehand. In fact, the input of data may be a part of the algorithm
itself.

*See Knuth (19), p. 1.

22

2.1 THE CONCEPT OF AN ALGORITHM 23

As an example, consider the familiar Euclidean Algorithm that is stated
as follows:

Given two positive integers @ and b, find their greatest common divisor.

There are, of course, as many different problems of this type as there are
different pairs of positive integers @ and . Any of the problems can be
solved by constructing a descending sequence of numbers, the first of
which is the larger of the two numbers and the second the smaller. The
third number is the remainder from dividing the first by the second. The
fourth number is the remainder from dividing the second by the third, etc.
When one of the divisions leaves no remainder, the divisor in the last
division is then the required number. The above procedure can be sum-
marized in the following list of instructions: (although the steps differ for
computational reasons)

Instruction |
Consider (or obtain) the numbers @ and b. Proceed to the next in-
struction.

Instruction 2
Compare the two numbers (i.e., determine whether the first is greater
than, equals, or is less than the second number). Proceed to the next
instruction,

Instruction 3
If the numbers are equal, each of them is the required result and the
calculation stops. Otherwise, proceed to the next instruction.

Instruction 4
If the first number is smaller than the second, exchange them and
proceed to the next instruction.

Instruction 5
Subtract the second number from the first and replace the two num-
bers under consideration by the subtrahend and remainder, respec-
tively. Proceed to instruction 2.

From this example, it can be seen that the number of actual instructions
that must be executed in solving a particular problem is not known be-
forehand and is dependent upon the input data (in this case a and b).
The number is discovered only during the course of computation.

Characteristics of an Algorithm

By its very nature, an algorithm implies a set of specific properties. They
are conveniently summarized in two defining characteristics: the deter-

inmmnatiiens amd somacal (‘.-.I..A... I.......n

llllIlIDLI\.v nalurc ana ECIICldIlly O1 Al VUL ILLTD,

The deterministic nature of an algorithm. An algorithm must be given
in the form of a finite list of instructions giving the exact procedure to

24 PROGRAMS AND ALGORITHMS

be followed at each step of the calculation. Thus, the calculation does
not depend on the calculator; it is a deterministic process which can be

'ﬂ'\ﬂﬂ"ﬂfl Dllﬂnﬂt‘ﬂ“llll‘l at any mn ﬂl‘\A I'\ YV anuvmano
Tvplatvd SuLLLodiuily ac ally time ana Uy aliyvii.

The generality of an algorithm. An algorithm is a single list of instruc-
tions defining a calculation which may be carried out on any initial
data and which, in each case, gives the correct result. In other words,
an algorithm tells how to solve not just one particular problem, but a
whole class of similar problems.

2.2 PROGRAMS

The design of modern computing machines parallels the algorithmic
nature of most applications. The computer operates under control of a
series of instructions which are stored in high-speed internal storage,
along with data, and are interpreted and executed by the circuitry of the
machme. The instructions are usually primitive in nature, each being
composed essentially of an operation and one or more operands or modi-
fiers, and exist in a form chosen for the representation of data. Machine
instructions which exist in this form are said to be in machine language
since they are numerically coded and directly executable by a specific
computer.

The Nature of a Program

A computer program* is similar in concept to an algorithm or to a se-
quence of machine language instructions; it is defined as follows:

A program is a meaningful sequence of statements, possessing an im-
plicit or explicit order of execution, and specifying a computer-oriented
representation of an algorithmic process.

A statement, in turn, is a string of symbols from a given alphabet, com-
posed of letters, digits, and special characters. The form of each statement
adheres to a set of rules (syntax), and implies an operational meaning
(semantics). Collectively, the alphabet, syntax, and semantics are termed
a language. Thus a machine language instruction, synthesized from the
alphabet of internal machine codes, adhering to a primitive syntax of
operation codes, operands, and modifiers, and possessing an operational
meaning determined by the circuitry of the machine, satisfies the defini-
tion of a statement even though the set of basic operations is not directly
suited to the execution of commonly needed procedures, and the repre-
sentation of operands, that is, numeric addresses, affords little mnemonic
advantage.

*Usually referred to as simply a program.

2.2 PROGRAMS 25

Programming Languages

Since machine languages, in general, are not suitable for human use,
it is necessary and feasible to define languages which are and then trans-
late programs written in these languages to machine language for subse-
quent execution on a computer, or to interpretively execute the programs
without going through a translation phase.

Languages of this sort are often termed programming languages and
come in a variety of forms. The most primitive form of programming
language is closely akin to machine language except that operations,
operands, and modifiers are replaced by symbolic equivalents. A lan-
guage of this type is called assembler language, a simple example of which
follows:

LOOP READ X
LOAD X
MULT FACTOR
ADD E
STORE ANS
PRINT ANS

BR LOOP

Although assembler language negates the principal disadvantage of ma-
chine language (i.e., the necessity of manipulating internal machine
codes), it is obvious that basic machine operations (or their symbolic
equivalents) are not convenient for representing most algorithmic
processes.

A procedure-oriented language is a form of programming language that
is related, in a sense, to a class of programs under consideration. Proce-
dure-oriented languages are usually classed as to whether they are scien-
tifically oriented or commercially oriented or whether they are amenable
to applications programming or to a form of systems programming. The
following statements:

SUM=SUM +A(I)*Y*»2
MOVE NAME TO REPORT-FIELD.
N+ (10*-N)x LO.5S+Xx10«N

—— P N 1

are examples of the FORTRAN, COBOL, and APL languages, respec-
tively, and are typical of the general form of most programming
languages.

26 PROGRAMS AND ALGORITHMS

Basic Functions

Although programming languages differ widely in scope, form, and
content, the various statements can be grouped into five well-defined
classes which perform distinct basic functions. The classes of statements
are: data manipulation, program control, input and output, declarative,
and subprogram.

Data manipulation statements perform the calculations, data movement,
list processing, or string editing required by a particular application. As
a result of data manipulation, computation is performed and/or a data
variable is replaced.

Program control statements provide a facility for altering the sequential
flow of execution in a program. Control statements are divided into four
categories: unconditional branches, conditional statements, looping, and
execution control. Statements in the latter category halt or terminate
program execution or supply the computer with compile-time
information.

Input and output statements are the facilities with which a program
communicates with the outside world. A variety of device types is usually
supported and sets of data can be organized in any of several ways.

Declarative statements specify problem and execution-control data,
establish storage requirements, define file types, inform the compiler of
hardware configurations, and specify the manner in which execution-time
conditions are processed.

Subprogram statements permit a program to be structured into func-
tionally distinct and efficient subprograms. Function or subroutine type
procedures can be defined by the programmer or retrieved from a per-
sonal or installation-based library of programs.

Program Structure

In its simplest form, an executable program is composed of a collection of
machine instructions and data (whether it be initial data, intermediate
values, or intermediate results) stored in contiguous locations in computer
storage. However, very few programs are actually executed in this form.
The reason is that common ordinary functions, such as the trigonometric
sine or the square root, need to be used, and it would not be feasible,
from an efficiency standpoint, for each programmer to prepare his own
version. This leads, generally, to the notion of a subprogram, a concept
which permits the execution of identical kinds of computation with dif-
ferent data.

Thus, most executable programs are composed of a main program and a
collection of subprograms, where a subprogram is defined informally as a
segment of coding that is prepared in a general fashion for use at multiple
points in a program.

2.3 FLOW CHARTING 27

Subprograms exist in two forms: functions and subroutines. A function
has an explicit result and assumes a value as a constituent of a mathe-
matical expression. The trigonometric functions (SiIN, COS, TAN), the
square root (SQRT), and the absolute value (4 BS) are common examples
of functions. A subroutine does not have an explicit result and is usually
invoked by a special statement in the programming language.* As
described below, a subroutine is classed as a closed subprogram. A func-
tion, on the other hand, can be an open or closed subprogram.

In some cases, the number of machine instructions required to invoke a
subprogram is not justified by time and space savings. For these cases, it
is convenient simply to insert the necessary instructions directly into the
machine language program at each place where it is used. A subprogram
of this type is called an open subprogram and is contrasted to a closed

subprogram for which only one copy exists per program and standard
linkage i1s made to it each time it is referenced.t The two types are de-

QL LV il CILLILIILLL L oA L]

picted as follows:

()

(1)
A B
(2)
(2)
A ———— Closed Subprogram
Open Subprogram

2.3 FLOW CHARTING
The old cliche, “‘a picture is worth a thousand words,” has particular
truth for the person preparing a program for computer processing or
designing a data processing system that uses a computer for one or more
of its functions. A flow chart is a picture of the steps which must be per-
formed to accomplish a given job; it is useful during the planning stage
and serves as a guideline for implementation as well. A flow chart is also
an important part of the documentation of a program or system. The
logic of data processing systems and computer programs tends to become
very complicated, especially after a few changes have been made. It is
*The most familiar example is the CALL statement used in COBOL, FORTRAN,
and PL/I

tOther common names for open and closed subprograms are in-line and our-of-line,
respectively

28 PROGRAMS AND ALGORITHMS

usually difficult to grasp the overall flow of a system from its outward
appearances. Similarly, it is equally difficult to grasp the logic of a
program from a perusal of its statements. A flow chart is useful in both
cases for indicating the sequences of operations and for clarifying what
must be done as the result of each decision that is made,

Types of Flow Charts

The amount of detail included in a flow chart is usually left to the orig-
inator and is dependent upon the application to be described. Two
different types are identified: system flow charts and program flow charts.
Each type can be further classified as to whether it is a macro flow chart
or a micro flow chart. No formal distinction is made between the two
levels of detail, although the word macro is generally used when only the
overall flow of a system or program is included, whereas the word micro
is used to indicate a flow chart in which most essential details are
recorded.

A system flow chart describes the flow of data and the operational
procedures in a data processing application. Normally, the following
elements are defined: the origin of data, manual operations, storage
devices, data transmission procedures, data processing functions, and
input/output operations. Figure 2.1 depicts a typical system flow chart.
The various symbols are defined in the following section.

A program flow chart, often called a logic diagram or block diagram,
depicts the sequence of operations and decisions in a program, subroutine,
or function. Because of the sophisticated logic in most computer pro-
grams, flow charts are extremely important during the coding stage of
program preparation and for documentation as well. In the latter use, a
good flow chart greatly aids recall in the event the program needs modifi-
cation at a later date. Figure 2.2 provides a sample program flow chart,
the symbols of which are introduced next.

Flow Charting Symbols

It is clear from the previous examples that different symbols (or boxes)
are used for different purposes. Flow charting conventions, regardless of
their specific content, facilitate understanding and decrease the effort
required to develop an effective diagram.

Flow charting symbols are divided into three categories: basic symbols,
programming symbols, and system symbols. No explicit rules for using
the symbols exist, and programming symbols are frequently used in
system flow charts and vice versa. The basic symbols (Figure 2.3) form a
minimum subset and apply, in general, when a more specialized symbol
does not exist. The programming symbols (Figure 2.4), with the exception

of the decision box, apply mainly to computer programs and are exten-

29

2.3 FLOW CHARTING

g
paisanbay SONSNBIS
atedatg 1oday
| /
A4 Beq
S.ﬁn_ [eansnels weldold
109128 ou.mv.a n siskjeuy
b |
jpadiiay ving siskjpu p

uoday

elauan)

eIR(]
padi1sag
1PENXY

lioday

%

1sanbay
1sanbay Eou‘mhm
Suissasold siskjeuy
Qouway eleq

a
UOISIDIA Lau_m.m._i
[TEREY|
2AEG

PIO
Yim 3319

L8 |
B KJusA
Aljensip

"HOY> Moy wdysAs ooidA] |z By

RLQLENT Y

‘ON
yuduuitadx gy
uo Jog

spleyeie -

induj A)ieqq 1v3[10D

walshg
uoi123jjoD)
veq

30 PROGRAMS AND ALGORITHMS

Sort Subroutine
Arguments LIST. N[— — (Entry)

Sort
Complete

No Exchange

INDEX < N

INDEX =LIM

| N
Exchange LIST (INDEX)
LIST (INDEX) T(ND INDEX
and LIST (INDEX & 1) INDEX —1
(INDEX + 1)

Fig. 2.2 Typicol program flow chart.

sions to the basic symbols. The system symbols (Figure 2.5) are the
largest collection and are divided into: input/output media, input/output
devices and device types, and processing operations.

Information is represented in a flow chart in two ways: by the symbol
chosen and by descriptive terms placed within the symbol. Use of the
decision symbol, for example, would further indicate whether the basis of
decision is a comparison, the checking of a switch, or the testing of a
hardware indicator.

2.3 FLOW CHARTING

31

The process symbol is defined as the symbol used to repre-
sent an operation or group of operations not represented
by other operations. These operations are concerned with
the actual functions performed by a system or program.

The input/output symbol is used to denote any function
of an I/O device. Making information available for
processing is an input function; recording processing
information is an output function Included in the 1/O
category are reading, writing, backspace, rewind, etc, of
magnetic tape, I/O functions of card readers, card
punches, and printers, as well as those operations in-
volving communication between random access storage
units and the main storage.

The flow direction symbol is the basic element of a flow
chart It represents the direction of processing flow.
general flow is top to bottom, left to right It is inherent
in most programs and systems that many decisions are in-
volved—that is, tests to determine which of two or more
paths should be taken. This leads to complex flow charts
and hence to the requirement that flow lines be drawn
with an arrowhead whenever the direction is not im-
mediately clear Looping—that is, repeating a sequence
of operations—is also a common occurrence and in some
cases leads to violation of the basic rule of the processing
flow. Flow lines may cross indicating no logical inter-
relationship. Arrowheads may appear on all lines; when
used, they should be placed at the point of entry to a

connector or functional symbol

The connector symbol represents an entry form, or an
exit to, another part of the flow chart A set of two
connector symbols is used to indicate a continued flow
when the use of a line is precluded by the physical or
esthetic limitations of the flow chart Identification
information should be placed within the symbol.

The annotation symbol provides a means of adding
descriptive information to a flow chart. It is connected
to the flow chart where meaningful

Y

Fig. 2.3 Basic flow charting symbols.

32 PROGRAMS AND ALGORITHMS

Tha Adonicinem cymibhoal 2o tead 1A Aacint 0 cmai;nt ot whink
LIV ucLIiaIvn DyIIIUUI 193 WoIwvu v ucplbl a pUllll ak ¥wiliklil

a branch to one of two or more alternate paths is possible
The basis for the decision should be clearly indicated
and all possible conditions should be accounted for.

The predefined process symbol represents a group of
operations not detailed on the particular flow chart—for
example, a library subroutine.

The preparation symbol indicates that an operation or
group of operations changes the program itself—for
example, initialization, address modification, loading of
an index register, or the setting of a switch.

The terminal symbol represents any point at which a
program originates or terminates,

The parallel mode symbol indicates the beginning or end
of two or more simultaneous operations

.

Fig. 2.4 Program flow chorting symbols.

Input/ OQuipur Media

Input/output using punched cards

Input/output using magnetic tape

Input/output using punched paper tape.

Input/output using a document

Input entered manually on keyboards, switches, dials, etc

Output displayed on a display device, console typewriter,

etc.
1/ 0 Devices and Device Types

input/output using direct access storage devices such as
drums, discs, magnetic strips, etc

Storage not directly accessible by a computer.
Magnetic disc storage
Magnetic drum storage

Auxiliary core storage
Dara Processing Operations

The merge symbol represents the operation of combining
two or more sets of data into one set

The extract symbol represents the removal of specific
data items from a set of data

The sor1 symbol represents the arrangement of data items
in a given sequence

The collatie symbol indicates that two or more sets of
data are formed from two or more other sets using the
merge and extract operations

Tha
L

Vel
v uu

process which is not limited

The manual operation symbol represents an ofi-line
process limited by operator speed

The communication link symbol represents data trans-
mitted by a telecommunications link.

Inpul /Output Medha

OQguol

170 Devces and Device Types

504 (]

Data Processing Operatiom

\ O] O <>

Fig. 2.5 System flow charting symbols.

34 PROGRAMS AND ALGORITHMS

The Robot Problem

The robot problem is one of the classic problems in the theory of flow
charting and 1s included for the amusement of the reader.

Write a flow chart to tell a robot how to find a door in an L-shaped
room and open it. The starting point and the position of the door(s) are
not known. Initially, the robot faces parallel to some wall. The doors
slide open to the left. The computer in the robot has a stored program.
The robot can accept the following commands:

1. Move straight ahead until you either bump something or sense the
crack on the right of a door. The crack cannot be sensed unless
the wall is directly to the robot’s right, and the sensing mechanism
is unreliable and should be given three chances to find a crack.

2. Turn 90° to the left.

3. Insert hand in crack.

4. Ring buzzer—to be done if crack cannot be found.

The computer receives the following feedback:

1. Whether the robot has stopped moving.

2. Whether it was stopped by a wall or a crack.

3. Whether there is a wall on the robot’s right,

2.4 DECISION LOGIC TABLES

Decision logic tables provide a means of describing complex decision
processes for which flow charts tend to become quite lengthy. Whereas
flow charting requires that the analyst describe his problem and develop

his system or program in the same operation, use of a decision logic table
permits the logic of a decision process to be stated independently of how

it is to be implemented.

Basic Concepts

A decision logic table is a tabular display of all pertinent aspects of a
problem situation. The table contains all relevant conditions, relation-
ships, and actions to be taken under each set of circumstances. For ex-
ample, consider the following decision process: “‘If credit is OK, approve
order; if credit is not OK, but payment record is favorable, approve
order; if credit is not OK, payment record is not favorable, but special
approval has been obtained, approve order; otherwise, return order to
sales.” The process would normally be flow charted as shown in Fig-
ure 2.6. A decision logic table to represent the same procedure would
appear as Table 2.1.

In a decision logic table, a set of conditions and its related set of actions
is presented as a verticle rule. Whereas a flow chart depicts a decision

2.4 DECISION LOGIC TABLES 35

Credit No /Payment_No Special No Return
QK Record Approval to Sales
OK
Yes Yes A
_ pprove
o Order

Fig. 2.6 Credit approval flow chart.

TABLE 2.1. DECISION LOGIC TABLE FOR CREDIT APPROVAL

Rule | Rule 2 Rule 3 Rule 4
Credit OK? Y N N N
Payment record favorable? — Y N N
Special approval obtained? — — Y N
Approve order. X X X —
Return to sales. — — — X

process serially, a decision logic table represents the same process in
parallel.

A decision logic table has four major sections, described in Table 2.2,
and listed as follows: conditions stub, action stub, condition entry,
action entry.,

TABLE 2.2. SKELETON OF A LIMITED-
ENTRY DECISION LOGIC

TABLE
Condition Condition
Stub Entry
Action Action
Stub Entry

The condition stub is the upper left quadrant and contains descriptions
of conditions on which decisions are to be based. Conditions are usually
represented as questions. The action stub occupies the lower left quadrant
and supplies all possible actions for the conditions listed above. The
condition entry section is found in the upper right quadrant and answers
the questions found in the condition stub. All feasibie combinations of
answers to the questions are formed here where the responses are re-
stricted to Y to indicate yes and N to indicate no. If no response is indi-

36 PROGRAMS AND ALGORITHMS

cated, then the response need not be checked for that particular question.
The action entry is the remaining quadrant of the table and indicates the
appropriate actions resulting from the conditions above. The only per-
missible entry here is the X to indicate, **Take this action.”” One or more
actions may be designated for each combination of responses.

Types of Decisian Lagic Tables

The decision logic table used in the previous example is named a limited-
entry decision logic table. Two other varieties are in general use: ex-
tended-entry tables and mixed-entry tables.

The limited-entry decision logic table (LEDT) is the most widely used
type and is readily identified by the fact that the condition entries are
restricted to Y, N, or are irrelevant (represented by —) and the action
entries are restricted to the character X. As an additional example, an
LEDT for a personnel classification problem is given as Table 2.3.

TABLE 2.3. LEDT FOR PERSONNEL CLASSIFICATION PROBLEM

i 2 3 4 5 6 7 8

Bachelor's Degree — — — — Y Y N N
Master's Degree - Y ¥ N N N N
Ph.D. Y Y N N N N N N
Less than 5 Years Experience|]Y N Y N Y N Y N
Greater than or Equal 10

5 Years Experience N Y N Y N Y N Y
Assign-grade 4 X
Assign-grade 8 X X
Assign-grade 12 X X
Assign-grade 16 X X
Assign-grade 20 X

In an extended-entry decision logic table, the condition and action stubs
serve only to identify the variables to be tested and the actions to be taken
respectively. The condition entries must then contain a value or condition
to be tested. Similarly, the action entries must contain specific procedures
or data for the actions to be taken. The number of entries in the condition
and action stubs tend to be less in this form compared to limited-entry
tables; however, in many cases extended-entry tables must be converted
to their LEDT counterparts before computer processing can be attempted.

Features characteristic of both limited-entry and extended-entry tables
may be combined into a single table called a mixed-entry decision logic
table. In any one horizontal row, however, entries are limited to one of

2.5 SUMMARY 37

the two types, exclusively. Mixed-entry tables have one major advantage.
Conditions that can be appropriately expressed by binary values (i.e.,
Y or N) may be represented in that fashion and conditions that must be
expressed by relational expressions may be written in that manner,
Because of the relative simplicity of decision table methods and their
ease of understanding, they are especially suitable for documentation and
for communicating ideas among people. For computer applications, sev-
eral subsidiary topics exist: equivalent LEDTs, conversion of decision
tables to computer programs, and the generation of optimal sequential
testing procedures. The reader is referred to Katzan (18) for more infor-

mation on these and related topics.

2.5 SUMMARY

The notion of an algorithm, defined as a list of instructions specifying a
sequence of operations that give the answer to any problem of a given
type, is a key concept in mathematics and in computing and characterizes
many existing computer applications. A program is defined accordingly
and is expressed in an appropriate language; some familiar languages are
machine language, assembler language, and procedure-oriented language.
The meaning of a program is frequently difficult to grasp from a perusal
of the statements contained in it, so more explicit ways of describing the
overall logic are required. A flow chart is a picture of the overall flow of a
program and uses well-defined symbols to facilitate development and
understanding. A decision logic table is a tabular display- of the pertinent
conditions and actions in a complex procedure. The principle advantage
of decision logic tables is for describing sophisticated decision processes
for which flow charts would become exceedingly lengthy and difficult to
follow.

[FV)
4/
ra)
(¥ o)
=i
O
=
m

S

W
Q3
@)

O
<
U
C
]
m
~
V)

3.1 MACHINE FUNDAMENTALS

Even though a practical algorithm is usually based on subtle and com-
plicated arguments and its construction requires a certain amount of
ingenuity, it can be used by a person who does not even know its purpose.
He need only follow instructions and is thus able to solve any problem
from the class for which the algorithm was constructed. In a sense, the
person is behaving as a numerical transformation machine which can be

depicted as follows:

vy iviiva GO

Numerical
Input : Output
Numbers - Transformatlon —, Numbers
Machine

The process involved in performing numerical transformations is of par-
ticular interest. The steps performed by a human calculator are described
as an introduction to machine fundamentals. In following an algorithm,
a person receives, processes, and stores various data. Usually he writes
these data on paper and performs the operation either mentally or me-
chanically. The process can be summarized as follows:

The storage of information is usually accomplished by writing down all
data, including the instructions for solving the problem (the algorithm),
on a piece of paper. In practice, of course, the calculator does not

38

3.1 MACHINE FUNDAMENTALS 39

write down everything. Some things he remembers (stores in his brain
rather than on paper), while some he looks up in charts or tables.
However, this must not obscure the basic fact that some means is pro-
vided for storing all necessary information.

Processing the information involves performing the elementary opera-
tions required by the algorithm. This may be done by using computing
devices; for example, arithmetic operations may be done on an adding
machine, a slide rule, or by using a remote terminal system. Each step
of the calculation consists of taking certain information (e.g., numbers)
from the paper, performing a specified operation on it, and recording
the result at another place on the paper.

Control of the process, that is, the determination of what step is to be
performed next, is carried out by the calculator by referring to his in-
structions and by carrying out comparison and logical operations.

In an automatic computer, analogous physical devices exist, that is, a
storage unit plays the role of the piece of paper and a processing unit
controls and performs the necessary operations. This concept can be
expressed schematically as follows:

Storage
Unit

¢t

| 5 Y .
Processing

Unit

Input —> —>, Output

For controlling and performing the necessary operations, the processing
unit contains two functional units: a control unit and an arithmetic unit.
These units, along with the storage unit, are the subject of the remainder
of this section. Two other types of devices that are obviously necessary
in an automatic computer have been omitted here: input units and output
units. They are treated in detail in Chapter 7, “*Computer Systems and
Devices.”

Storage

The function of the storage unit of the computer is to hold instructions,
initial values, input data, intermediate values, and final results before
output. Each of the preceding quantities (i.e., a data item) is located at a

40 BASIC STRUCTURE OF COMPUTERS

specific place in computer storage and that location is termed its storage
address. As mentioned previously, both numbers and computer instruc-
tions are i't‘:ﬁi't‘:St‘:i‘itt‘:u il“iu‘:i'i‘iau:y' as sequences of uiglts with the essential
difference being in how the quantities are interpreted by the circuitry of
the computer.

The manner in which storage is organized determines to a great extent
how a specific location is addressed. In early computers, storage was
organized on a word basis with each word being composed of a finite
number of digits. Each word was assigned a physical address. Thus, a
word could represent an instruction, a numerical value, or a series of
characters. Two significant problems existed: (1) Before a specific char-
acter could be processed, a series of shifting or masking operations was
necessary. (2) Special considerations were necessary for processing char-
acter operands which occupied more than one computer word. This basic
difficulty led to the facility, in some computers, of addressing variable-
length words, with the smallest addressable unit being a character.*
Variable-word computers also had their limitations in that quantities
requiring more than one character, such as a number, had to be termi-
nated with a special symbol, or a length attribute had to be given with
the machine instruction itself,

The inadequacies in both systems led to the facility in some recent
computerst that allows both fixed and variable word lengths to be used in
the same computer. This is achieved by having a byte-addressable storage
organization. A byte is a group of digitsf which form a subunit of a
computer word and which has a physical address in storage. In the ex-
ample of Figure 3.1, two bytes make up a half word, four bytes make up a
full computer word, and eight bytes compose a double-length word.
When a computer instruction references§ a full word, the computer auto-
matically fetches or stores four bytes. Other instructions use half words
and double words, and two or eight bytes are referenced, respectively.
Instructions which operate on variable-length operands specify the ad-
dress of the first byte and the length of the field, which can represent a
string of characters or decimal digits in a coded form.

Control

It has been implied thus far that in the modern version of an automatic
computer, instructions are stored internally, that is, in computer storage,

*A character is referred to as a byre on some computers. The facility of addressing char-
acters directly is particularly useful for applications that primarily involve the manipulation
of nonnumerical data.

tFor example, the IBM System /360 and the RCA Spectra/70

fUsually taken to be binary digits.

§A word is referenced by the address of its high-order (leftmost) byte.

3.1 MACHINE FUNDAMENTALS 41

Byte 8 bits (binary digits)

Half word | | | 1 6-bit word

Full word I I l I] 32-bit word
Double word I I l I | i l l 1 64-bit word
chrscer [T} [T Bech i owcevcods

l l l l J Each byte can represent two decimal
_L.___ _ digits in 4-bit coded decimal
byte

Fig. 3.1 Address formats in a representative byte-addressable computer.

Packed decimal

and that the computer executes instructions sequentially, that is, one after
another, until it is instructed to do otherwise. The contro! unit governs
the operation of the overall system. It fetches an instruction from storage,
interprets it, and generates sequences of internal signals to have it exe-
cuted. The control unit also synchronizes the timing of internal signals
with the operational speed of the functional units.

The functions of the control unit can be summarized as follows:
(1) keeping track of the program address; (2) addressing storage; (3) in-
terpreting instructions; and (4) generating internal signals to synchronize
and execute basic machine operations. In performing the above functions,
the control unit requires and utilizes several internal registers. They are
described in a succeeding section on machine registers and their functions.

Arithmetic

The arithmetic unit contains the registers and circuitry necessary to exe-
cute the fixed-point, floating-point, logical,* and variable-length instruc-
tions of the computer. To some extent, the level of sophistication of the
computer is reflected in the arithmetic unit. For example, some high-
performance systems contain multiple subunits for fixed, floating, and
logical operations. Some arithmetic units perform addition and sub-
traction serially on a digit-by-digit basis whereas others perform the
operations in parallel using high-speed registers. Ordinarily, a multiplica-
tion is performed as a repeated addition by the computer hardware and a
division is performed similarly as a repeated subtraction,t although on

some machines, the process is sneeded un with snecial circuits,

AARW AARCAWARARLIwWDy wai AL Prwaswie S=gs i Jprwhes

*Including shifting and related instructions.
tSee Section 3.3, “*Register Operations "

42 BASIC STRUCTURE OF COMPUTERS

The basic design of the computer is also reflected in the addressable
registers used to hold intermediate values during data manipulation and

to utilize index values during addressing. Three general methods exist:
(1) Have no addressable registers and require that all operations operate
from storage to storage. This method is frequently used with variable
word length computers. (2) Include one or more accumulators, which can
hold either a fixed, a floating, or a logical operand. Indexing is then per-
formed with special index registers. This philosophy is usually associated
with fixed word length computers. (3) Include separate registers for
fixed-point and for floating-point operands. This philosophy reduces the
number of “‘stores” to memory and allows fixed-point registers to be used
for indexing, as well. This latter technique is used with byte-addressable
computers.

Machine Registers and Their Functions

A register is a storage mechanism for holding fixed-length computer
words. It differs from ordinary storage in that it is synthesized from
expensive components and is capable of operating at relatively high
speeds. Most registers are used to hold data or instructions temporarily
and may or may not be addressable by the programmer. As pictured in
Figure 3.2, an addressable register may be loaded, may be used as an
operand for arithmetic and logical operations, and its contents may be
placed in storage. In spite of the wide variety of computer designs, a
basic subset of registers is found in most machines. They are listed as
follows:

1. Current Address Register (Control Unit)—
contains the address, in storage, of the current computer instruc-

tion.
Storage
Arithmetic
Register
I—_—'l Load
|
A
f_'*_\ Add to
o/
Store o
]
)
®

Fig. 3.2 Use of an addressable register.

3.2 MACHINE OPERATION 43

2. Instruction Register (Control Unit)—
holds the current instruction during execution.
Address Register (Control Unit)—
holds the address portion or operand of an instruction during
execution.
4. Accumulator (Arithmetic Unit)—
the high-speed register in which arithmetic is performed.
5. Multiplier-Quotient Register (Arithmetic Unit)—
the MQ register, frequently referred to as the X register, holds the
multiplier during multiplication and the quotient during division
and is considered as a right-hand extension to the accumulator.
6. Index Register (Arithmetic Unit)—
high-speed register used for indexing.
7. Storage Register (Arithmetic Unit)—

a temporary storage register internal to the arithmetic unit, n

rectly addressable by the programmer, and which forms a data
buffer between storage and the processing unit.

(%)

nit. not di-

3.2 MACHINE OPERATION

Similar to the manner in which a user synthesizes complex operations
from elementary machine instructions, the processing unit must perform
a series of internal micro operations to effectively execute a machine
instruction. This section gives a functional description of how the pro-
cessing unit of an automatic computer operates.

Machine Instructions

All computer operations take place in fixed intervals of time, measured
by pulses emitted from an electronic clock at frequencies as high as a
billion per second. A fixed number of pulses is termed a machine cycle.
Within a machine cycle, the computer can perform one or more specific
micro operations, which can be combined with other micro operations to
form machine instructions. Thus, the number of micro operations in an
instruction is variable and depends on the particular instruction. In a
variable-length instruction, the required number of micro operations is
additionally dependent upon the length of the operand(s).

A machine instruction consists basically of two parts: an operation
and an operand. The operation tells the machine which function to per-
form. The operand augments the operation by providing: the location(s)
of data or an instruction which the operation references; the physical
address of a hardware device, such as an input/output unit, which the
operation uses; or a modifier for a control function, such as the number

44 BASIC STRUCTURE OF COMPUTERS

of places that a register should be shifted. Examples of machine in-
structions which address locations in storage are the ordinary ADD, SUB,
and MOVE. A READ or WRITE instruction would ordinarily address a
hardware device whereas a SHIFT instruction would indicate the number of
places to be shifted.

The processing unit must operate in a prescribed sequence to perform
its main functions of fetching, interpreting, and executing instructions.
Two major cycles are identified: the instruction cycle and the execution
cycle. Collectively, they determine the manner in which a machine in-
struction is processed.

Instruction Cycle

The first major cycle involved in executing an instruction is termed the
instruction cycle, often referred to as the I-cycle. During an I-cvcle, the
control unit performs the following functions (see Figure 3.3):

I. The instruction is fetched from storage and placed in the storage
register.

2. The operation part is routed to the instruction register to determine
what function must be performed.

Current Address
Storage Register

A

I
|
I
|

)

|
AN

Storage Regmerl oP I OPERAND |

SN

instruction Address
Register Register

! |

To Storage or
to the Current

ﬂuurcbb
(- : control, =data flow) Register

Arithmetic Unit

Fig. 3.3 l-cycle processing.

3.2 MACHINE OPERATION 45

3. The operand part is routed to the address register to obtain the in-
formation to be used in the operation.*
The current address register is updated to the location in storage o
the next instruction.

S

During the execution of a program, the current address register is set
initially to the address of the first executable instruction in the program.
The instruction is fetched from storage, and while it is being decoded
and interpreted, the current address register is updated by the length
attribute of the current instruction to point to the address of the next
instruction in sequence. Normally, a program is executed serially and the
automatic updating of the current address register is a sound design
tradeoff. In some cases, however, it is desired to continue execution from
another portion of the program as the result of a program decision or to
repeat an entire block of instructions. Branching instructions are thus
included in most instruction repertoires and effectively allow the contents
of the current address register to be altered.

Execution Cycle

The instruction cycle is usually followed by an execution cycle (E-cycle)
to execute the decoded instruction. The operand is fetched from storage,
and control signals are sent to the arithmetic unit to activate the proper
arithmetic, logical, or control circuits. For a variable-length instruction,
the arithmetic unit is provided the addresses of operands in storage rather
than actual data values in the arithmetic and storage registers. Figure 3.4
depicts a typical E-cycle. The address register frequently contains in-
formation other than storage addresses. The operation part of an instruc-
tion indicates how the contents of the address register should be inter-
preted—that is, as an address for data, the location of the next instruction
for branching, the number of places in a shifting operation, or the identity
of an input/output device. The actual length of the execution cycle varies
depending upon the instruction to be executed. For example, a floating-
point multiply usually requires more machine cycles than does a fixed-

point addition.

Stored Program Concept

It was mentioned carlier that in most modern computers, the program, in
the form of machine instructions, is stored internally and the processing
unit has access to it at electronic speeds. Since the program is stored
along with its data, instructions are available to the processing unit as
data. Thus, a computer can be programmed to alter its own instructions,

*At this point, indexing of addresses to form effective addresses takes place.

46 BASIC STRUCTURE OF COMPUTERS

Storage ——
U Data
Storage Register Address Register
Data Contro_l
Information ¥
Control
Functions
Arithmetic Unit j———={ Input/Output,
Shifting
nranf\h;nﬂ ot~
AFsGIn L & LIL

Data and
Results

Arithmetic Registers {— : control, =data flow)

Fig. 3.4 E-cycle processing.

providing a great amount of flexibility and the widely heralded logical
capability of modern machines.

Usually, there are no specific areas of storage for programs and for
data, although each type is frequently grouped together for convenience
and for operating efficiency. To the computer, the only difference between
an instruction and a data item is the time when it is brought into the
processing unit. If information is fetched from storage during the I-cycle,
then it is processed as an instruction. If it is brought into the processing
unit or returned to storage during the E-cycle, then it is regarded as data.
In spite of the potential danger of generating invalid and inappropriate
instructions, program modification has become one of the marvels of the
computer age.

3.3 ARITHMETIC OPERATIONS

As in the case of the automobile and the airplane, a person need not be
capable of designing and building a computer to effectively use one. Yet,
a fundamental knowledge of how operations are performed is intellec-
tually satisfying and gives the occasional user an intuitive feeling for
practical limitations.

3.3 ARITHMETIC OPERATIONS 47

Fixed-Point Operations

One of the objectives of the computer designer is to simplify the circuitry
of the computer. The standard approach has been to use the same cir-
cuitry for more than one function, with the most frequent candidate being
the subtraction operation, One often hears the phrase, ““Subtraction can
be performed by the addition of complements.”” As shown below, this is
precisely true:

m—n=m+(100—n) (modulus 100)
For example:
71-44=71+(100-44)=71+56=27 (modulus 100)

As shown later, the hardware necessary to perform complementation is
relatively simple to implement. Now, multiplication is essentially repeated
additions and division is repeated subtractions; thus all fixed-point arith-
metic can be reduced to forms of addition.

The preceding example used the ten’s complement. The ten's comple-
ment of a number N is defined as 10"— N where n is the number of digit
positions in N. It should be recalled that 10” is one more than the largest
decimal number that can be formed with n decimal digit positions. The
ten’s complement is easily formed: Subtract all of the digit positions from
9 and add | to the result. The ten’s complement of 44, for example, can
be formed as (99-44)+1=56. Complements can be formed of numbers
to any base. The base complement of a number N occupying n digit
positions in the base b is computed as " - N. Thus, the two’s complement
of the binary number 110010 is 001110. It can be formed by changing all
I’'s to 0’s and all 0’s to 1’s and adding one. The simplicity of the process
for binary numbers is obvious and is the determining factor in the use of
complement arithmetic in binary computers.

Consider a fixed-point number represented in computer storage as
follows:

S integer

S refers to the sign (either + or —) of the number and the integer part
represents its magnitude. Assume for simplicity that the integer part
occupies three positions and that the sign position is offset to distinguish
it from an overflow position; then the number —-723 might be pictured
as follows:

48 BASIC STRUCTURE OF COMPUTERS

Clearly, the ten’s complement of — 723 would be represented similarly:

+

A three-position computer word will be used in subsequent examples.
Terminology may be recalled as follows:

m (addend) m (minuend)
+n (augend) —n (subtrahend)
m+n (sum) m—n (remainder)
m (multiplier) m (dividend)
xn (multiplicand) +n (divisor)
mxn (f)roduct) m+n (quotient)

Addition and subtraction can now be performed in a signed-magnitude
representation by applying well-defined rules:

. If the operation is subtraction, change the sign of the subtrahend.

2. If the numbers have the same sign, add the magnitudes and assign
that sign to the result.

3. If the numbers have different signs, subtract the smaller number
from the larger number and affix the sign of the larger number.

A decision tree for addition is given in Figure 3.5. A flow diagram for
both operations is given as Figure 3.6.

The use of complement arithmetic is so convenient that in some com-
puters, all negative fixed-point numbers are stored in complement form.
This design philosophy permits the elimination of an explicit sign position
and further simplifies the arithmetic circuitry.

Fixed-point multiplication and division are performed by repeated
additions and subtractions, respectively. Both make explicit use of ad-
dressable registers in the arithmetic unit, named the accumulator register
(AC) and the multiplier-quotient (MQ) register and a word in storage
called the memory register. They are defined as follows:

+
Accumulator—AC register
A J A fhich cmand vacictacs nyhava acvith e atin o
) uz s \IIIEII‘DPCCU ICEIDLCI WIHCIL Al lLlllLIGLIG 1>
x performed)

Overflow position

=S
d | d | d
=+
d | & | &

3.3 ARITHMETIC OPERATIONS 49

dreumulotor Extencion— MQ [cgiﬂfﬂ[

FAC L RTINS T Lavvr wrBRP &t

(contains pertinent data during arithmetic
computation)

Memory Register
(contains multiplicand during multiplication;
contains divisor during division)

Multiplication and division are introduced in the following examples.

Description of
multiplication:

Example:

The number in the specified memory register is alge-
braically multiplied by the number in the M Q register
forming a six-digit product in the combined AC-MQ
registers.

Multiply the number 211 by the number 455.

Initially, the second number would be placed in the MQ register and
the location of the first number would be specified as the memory register.
Pictorially, this would look as follows:

+

2 I Memory Register
+ AC + MQ
0 |0

0 4 5 5 AC-MQ Registers

The memory register will not change and will always be the multiplicand.

The contents of the memory register are added to the AC as many times
as the value of the last digit (third position) of the MQ register, so that
the A C-M Q would look as follows:

-+

AC + MQ

BASIC STRUCTURE OF COMPUTERS

50

-uoypjuasasdas apnpubouw-paubis ul spupsado 4oy uonippe dinugabo 10y 884y uoIsDAg ¢ 'Biy

spnnusep
unsay (—
insay (—) PPV
nnsay (+) \@.
sapnuudep w
PPV wawardwo))
g (— NSy Kue)
ynsay (—) Jawordwon r||m
Ny NSy , KuieD)
unsay (—) Juawardwo?) llm
sspmiudey u
PPV wowsduro)
nnsay (+) \@
apnuudep
nnsay (+ :
Inssy (+) PPV

3.3 ARITHMETIC OPERATIONS 51

Reverse Sign
of Subtrahend

Sign Alike

Take Base
Complerqent Add
of Negative .
Magnitudes
Number

| PN
Yes

Add " Set Overflow
Magnitudes %(y_— Switch

No

—
—ag

No Yes
Y |
Take Base Attach Sign of
Attach (<
Complement Sign to Re_:u)lt Numbers to
of Result Result
|
Attach (—)
Signto Result

Y

»{ End of OperatioD“—

Fig. 3.6 Flow chart for fixed-point addition and subtraction.

The combined contents of the AC-MQ registers arc shifted right one
place, that is,

52 BASIC STRUCTURE OF COMPUTERS

The contents of the memory register are again added to the AC register
as many times as the value of the last digit of the M Q, which is again 5,
that is,

+ AC + MQ

1 1 6 0|5 4 |5

Again shift right one place, that is,

+ AC T MO

0 1 1 6 | O 5 4
Thao ~nrmtamnte AL tha mramemey; saciatas §1 - Ln vsiltzanlinmnemdAl Anea asntn
LIV LULILLILY Ul LIV deILIvLY ICEIDLCI ..., LI muiu Hialiu) aiv agaiil
added to the AC, this time only four times because the last position of the

+ AC + MQ

0 9 6 10 |0 |5 |4

Shift once and the multiplication is complete,

T 4c Tl Mo

0 0 9 6 0 0

Ln

Note that the process of adding a number of times and then shifting was
executed three times. If the registers were ten digits in length, the opera-
tions would have been executed ten times.

Description of The number in the A C-M Q registers (combined) is alge-

division: braically divided by the number in the memory register.
The result appears in the M Q register.
Example: Divide the number 56088 by the number 456.
Initially,
+

Memory Register (does not change)

3.3 ARITHMETIC OPERATIONS 53

AC + MO

0| O 5 6 | O 8 8

If the contents of AC (alone) are greater than those of the memory
register, the division stops. Otherwise, AC-M @ is shifted left one place,
that is,

+ AC + MQ

0} 5 6 |0 8 8 0

The contents of the memory register are subtracted from the AC register
as many times as possible without changing the sign of the AC register;
the number of subtractions is placed in the low-order position of the MQ
register, that is,

+ AC 1 Mo

0 1 0 | 4 8 8 1

The AC-M Q registers are again shifted left one place, that is,

T oac t 1 MO

1 0| 4 8 8 1 0

The contents of the memory register are again subtracted as many times
as possible without changing the sign of the AC register; the count
(number of subtractions) is put in the last position of the M Q, that is,

t AC + MQ

0 1 3 6 8 | 1 2

The AC-M @ registers are again shifted left one place (for the last time—
count=3), that is,

54 BASIC STRUCTURE OF COMPUTERS

The repeated subtraction is again performed, that is

+ AC T MQ

0|0 0|0 | 2 3

The quotient is in the M Q register and the remainder is in the A C register.

Floating-Point Operations

In Chapter 1, a floating-point number was defined as having three com-
ponent parts: a sign, an exponent, and a fraction. Moreover, the exponent
was said to be biased so that the sign position represented the sign of the
number and not the exponent. A floating-point number can be pictured
as follows:

S exponent fraction

Although floating-point numbers are represented in a manner slightly
different from fixed-point numbers, addition and subtraction reduce to
similar operations after decimal points have been aligned. Consider the
two numbers, 70 and 8, in scientific notation, that is, .7x 10 and .8 x 10',
respectively. To align the decimal points, the number with the smallest
exponent is shifted right until the exponents agree, that is,

Ix10%=.7x10?
8x10'=.08x10?

Then, disregarding the exponents, the fractions can be added or sub-
tracted as in fixed-point arithmetic. After the operation is complete, the
fraction is shifted left or right until the first nonzero digit appears im-
mediately to the right of the implied decimal point and the exponent is
updated accordingly. The last shifting of the fraction is termed normaliza-
tion. For example, consider the operation: .102x 10— .94x10>. The
actual subtraction would progress as follows:

l. Equalize exponents
102 x 10*-.094 x 10?
2. Subtract
102x10°-.094 x 10°=.008 x 10°
3. Normalize

008 x10°=.8x10!

3.3 ARITHMETIC OPERATIONS 55

Floating-point multiplication and division require no more circuitry
than is required for floating-point addition and subtraction and for fixed-

point multiplication and division. In fact, floating-point muitiplication
or division is actually less complex than floating-point addition or sub-
traction since the exponents do not have to be compared. Consider a
floating-point number of the form N=nxb¢. The multiplication of two
floating-point numbers requires a multiplication of fractions and an addi-

tion of exponents:

(n, xb)x(ny x b)=(n; x ny) x b+

Similarly, the division of two floating-point numbers requires a division
of fractions and a subtraction of exponents:

(nyxb)+(nyx b)=(n;+n,) x b=

Afier either operation, normalization may be required, depending upon
the characteristics of the result and of the specific operation. All of the
constituent operations in floating-point multiplication and division can
utilize the corresponding fixed-point operation—thus, no additional
arithmetic circuits are specifically required except for those that control
the process and normalize the result.

The multiplication of (.2x 10%2) by (.1 x10') would progress as follows:

. Add exponents and multiply fractions
(2x10%)x(.1x10')=.02x 10?
2. Normalize result

02x10°=.2x 102

Similarly, the division of (.72x10%) by (.8x10') would involve the fol-
lowing steps:

1. Subtract exponents and divide fractions
(.72x10*)+(8x10")=.9x 10

2. No normalization is required as is often the case in floating-point
multiplication and division.

Floating-point arithmetic provides a variety of interesting problems.
One of them was alluded to in Chapter 1 and involved cases where the
associative law of addition fails in some cases. Another problem is con-
cerned with the rounding of floating-point results. Whereas in a fixed-
point multiplication, a double-length product is formed, in a floating-
point multiply, a single-length fraction is formed. Thus, the technique
for rounding and the time when it takes place are of great importance.

56 BASIC STRUCTURE OF COMPUTERS

Yet another problem questions the feasibility of normalizing results at all,
since the process tends to imply more accuracy than actually exists.

3.4 SUMMARY

Conceptually, the functioning of an automatic computer is not far re-
moved from the process performed by humans when doing calculations.
Three essential units are found in computers: storage, control, and arith-
metic. The storage unit holds the instructions, data, intermediate results,
and final results of a program. The control unit initiates the execution
of machine instructions and provides for the automatic mode of execu-
tion. The arithmetic unit performs the fixed and floating-point operations
required by a particular application. The basic operation in the arith-
metic unit is fixed-point addition, from which other operations can be
synthesized. Input and output units are also of importance but are
covered in a later chapter.

4.1 INTRODUCTION

From the notched stick of the ancient cave man, through the Chinese
abacus and the calculations of Pascal and Leibniz, past the analytical
engine of Babbage, to modern times, man has always had a need for cal-
culating devices and a means of storing information. As more complex
instruments were developed, more glamorous applications were found.
Today, technological man views with pride his large computer systems
with complex programs such as those for tracing neutrons, making airline
reservations, controlling space flights, and predicting weather. Notwith-
standing, everyday problem solving and data processing are taken for
granted—although they constitute the primary work load of most com-
puting devices. As a programming system, APL* is oriented towards the
last category. As a descriptive and an analytic tool, it serves as a valuable
vehicle in synthesizing systems in the first group. In general, APL is a
system with which the digital computer can be used, conveniently, as an
integral part of problem solving, in teaching, in algorithm design, and in
some forms of data processing and information retrieval.

Desk Calcuvlators and Automatic Computers

The ordinary desk calculator provides a means of simplifying calculations

Litnwoo it ava Fonmamn mmcam sy mbzeac o Ema

e oa stacnt wealiin Lieiliee: oiemmealiacee, O
ana aciieves its greatest vaiue irom compactness, mooiiity, simpiicity oi

*Which stands for 4 Programming Language (K E. Iverson, New York, John Wiley &
Sons, Inc., 1962).

57

58 FUNDAMENTALS OF APL PROGRAMMING

use, and relevance. In this context, relevance generally refers to the fact
that the human factors problems in using most calculators for arithmetic

~cramnntatinne ara minimal Althanoh an antamatiec comnntar ic aftan
vvlllyu‘utlvllﬂ Al W A114A30A1L1G41, ' ‘ltllvus.l il AW AWML VAW \'VllllJu\vl D L LWl

likened to a desk calculator, its attributes are much different. It can be
characterized as a fairly large and structurally sophisticated instrument
which is generally immobile, operationally complex, and provides for
considerable generality of use. The flexibility of an automatic computer
is almost beyond question yet it is not applicable to many problems be-
cause operational procedures are often excessively complicated and re-
sponse is frequently inadequate. In fact, the complexity of many com-
puter programs is a result of a poor man-machine interface and limited
access. APL combines the simplicity and relevance of a desk calculator
with the power and flexibility of an automatic computer. It utilizes a
recent technique called time sharing and the richness of Iverson's pro-
gramming language to provide a system which can be used for both
simple and complex problems and which is relevant to mathematical
description and natural for human use.

Time Sharing, Interactive Computing, and Remote Terminals

The user has access to the APL system via a remote terminal, which may
be located miles from the computer installation. The connection is made
with ordinary telephone lines and transmission is practically instanta-
neous. The remote terminal is a keyboard type device which can be
located in any convenient place where a telephone outlet is available. The
user types the information that he wants sent to the computer and the
computer responds normally within a few seconds with appropriate re-
sults. The discourse between user and computer is termed interactive
computing. An obvious question might be, ““What is the computer doing
while the user is scratching his head?”’ The answer is that the computer is
time sharing. Time sharing is a technique whereby a central computer can
service several users by giving each a *‘slice’” of computer time on a peri-
odic basis. Thus, the user has the operational advantage of having the
machine to himself. Because of the ultra-high speed of most modern
computers, control can be switched between users without an appreciable
delay in response time.

Time sharing would be useful without Iverson’s language. It will be-
come evident later, however, that a substantial amount of computation
can be specified in each interaction with the APL system—making APL
relevant to most problems being studied and to the experience level of
most users. As a result, the user is provided a system with the simplicity

computer.

4.2 ARITHMETIC AND TERMINAL OPERATIONS 59

Principle Areas of Application

It has been said that APL possesses simplicity and power.* In the sense
that large complicated programs and small elementary calculations can be
handled with ease, this is certainly true. It is also true that APL does not
require complicated constructions, as in some programming languages,
and that calculations can be specified succinctly and without ambiguity.
The notation of APL is based on the primitive and well-defined nota-
tion of mathematics. Yet, it is not correct to say that APL is limited to
mathematical applications. As in computing in general, a substantial
amount of APL use is mathematical in nature. In addition, the concise
notation and interactive mode of operation make it useful in teaching for
drill exercises and for experimentation with functions. It has been used
to store and retrieve information, for text editing, for logical analysis and

simulation, and for recreation.

One of the most significant advantages of using APL has yet to be
stated. It is that APL provides a concise means of describing an algo-
rithmic, physical, or logical process and that the description can be veri-
fied on a digital computer for later use in a variety of ways. In this light,

APL is one of the more significant advances in computer technology.

4.2 ARITHMETIC AND TERMINAL OPERATIONS

In using any terminal-oriented programming language, certain conven-
tions exist which apply to the physical facilities as well as to the proce-
dures for using the system. In the description given here, an attempt is
made to make the presentation independent of a particular implementa-
tion. Although the material contained here is patterned after the
APIN360 system implemented by Falkoff and Iverson (9) at the IBM
Watson Research Center, specific operating procedures, characteristic of
that implementation, are omitted and included for reference purposes as
Appendix B. Thus, this presentation is concerned with general operating

procedures and the APL language.

The Concept and Use of a Remote Terminal

The practice of using ordinary telephone lines constitutes a state-of-the-
art concept in information processing. Although the user needs only a
typewriter-like device to use APL, some *“*black boxes’ are needed to con-
vert digital signals to telephone signals and telephone signals to digital
signals on either end of the telephone line (See Figure 4.1). The black
boxes take two forms: a dataset and an acoustical coupler. A dataset is

*Sece reference (1), p 4.

60 FUNDAMENTALS OF APL PROGRAMMING

Computer

3
A

Transmission
atas Control
Dataset Une
Ordinary
. Telephone —
Dataset | Lines Dataset
Ordinary
Telephone
Lines
Acoustical Telephone
A

Fig. 4.1 Remote terminols.

supplied by the Telephone Company and establishes a fixed connection
between one terminal and one telephone line. The dataset contains fa-
cilities for dialing and for establishing a ‘*data’ connection. The dataset
on the computer end of the connection is answered automatically by the
transmission controller of the computer system. An acoustical coupler
is a mobile device attached to a terminal but not to any specific telephone.
A terminal equipped with an acoustical coupler is connected to the com-
puter by establishing an ordinary telephone connection and then clamp-
ing the receiver into the coupler mechanism. The coupler converts digital
signals to acoustical signals and achieves the same results as the dataset
described above. The reference manual for any terminal-oriented system
normally contains detailed procedures for establishing a telephone
connection,

It is desirable to establish well-defined procedures for setting up a tele-
phone link to the APL system. A basic set is given here:

. Prepare the terminal for operation. This not only involves turning
the device on but also setting the dials and switches to operate in the
communications mode rather than the local (or typewriter) mode.

2. Dial the APL computer. With a dataset connection, push the TALK
button and dial. With an acoustical coupler, simply dial. After the
telephone rings, you will hear a high-pitched sound.

3. Make the connection. With a dataset, push DATA and cradle the
telephone. With an acoustical coupler, clamp the receiver into the
coupler mechanism.

4.2 ARITHMETIC AND TERMINAL OPERATIONS 61

4. Sign on. ldentify yourself to the APL system as a valid user by
typing an established sequence of characters. See Appendix B for

the sign-on procedures used with the APL\\ 360 system.

After the sign-on has been completed, the user can enter into a dialogue
with the APL system using a combination of system commands and APL
language statements, typed in at the terminal. Commands and statements
are formed from the letters, digits, operators, and punctuation characters
of the APL alphabetic. The alphabet, type styles, and keyboard ar-
rangemcnt are designed to facilitate human use in an interactive mode of
operation.

The APL Typeface and Keyboard Arrangement

The APL alphabet and keyboard arrangement are given in Figure 4.2.
The letters are capitalized italics and the digits are upright, allowing sim-

HAHHAHEAARAAES
1} 2)]3(4;5)6)|]7)8]9]0)+]x SPACE
LI [
U P
A {

RETURN

LGOI D=

Fig. 4.2 APL olphobet ond keyboord arrangement.

ilar characters to be readily distinguished. The special symbols of the
APL language are primarily included as uppercase characters and gen-
erally have some apparent relationship to their alphabetic or numeric
correspondents. For example, w is over W, ¢ over E, p (rho) over R,
* (for power) over P, O (circle symbol) over O, a over A, I(for ceiling)
over S, and ' (for Kwote) over K.

The meanings of the various operator symbols will become apparent as
the respective operations are introduced.

Operators

As in ordinary mathematics and in most programming languages, opera-
tions are represented by special symbois. In APL, the most frequently
used operations have corresponding operator symbols that are widely
known. The ordinary operations of arithmetic are used in subsequent

62 FUNDAMENTALS OF APL PROGRAMMING

examples and are denoted as follows:

+ for addition

— for subtraction

x for multiplication

+ for division

* for power or exponentiation

Thus,

2+3=5

10-8=2
4x4=16

6+2=3
8+2=64

Most operators have two interpretations—one as a monadic operator
and the other as a dyadic operator. Usually, this facility is available only
with the negation operation. The degree of an operator is easily de-
termined. If the operator is preceded by a variable, a constant, or a
parenthesized expression, it is dyadic. Otherwise, it is a monadic op-
erator. Variables, constants, expressions, and the significance of monadic
and dyadic operators are discussed in subsequent sections.

Discourse with the APL System

When APL is used, the terminal serves as an input device and an output
device, depending upon whether it is the user’s turn or the computer’s turn
to type. If the keyboard is unlocked, the user may enter a statement.
When the user has finished typing his information, the RETURN key is
pushed so the computer knows that the statement is compiete. Only
then does the computer interpret and execute the operations contained
therein. Three events take place when the RETURN key is pushed; they are
listed as follows:

1. The carriage returns to the left margin and the paper moves up one
position—similar to an electric typewriter.

2. The keyboard is locked.

3. The computer recognizes that the statement has been completed and
that it may initiate processing it.

When the computer is processing one statement, additional statements
cannot be entered. Not only is the keyboard locked, but the computer is
simply not ready to accept another statement. When the required calcu-
lations have been completed, the computer responds by unlocking the
keyboard and by initiating the typing of the result (if any) beginning in

4.2 ARITHMETIC AND TERMINAL OPERATIONS 63

the left-hand margin. When typing is complete, the carriage is returned,
the paper is moved up one position, and the carriage is indented six

Qe Tha lbavyh aaed : thanm vunlAanrlbad fAw tha stcan’s mavé of

apa\,ca. 111C l\c_yuualu lD I.II.CII UIIUCACU 11Ul I..llC UdL1L D 1IVAL Dlalclllcllt

The user’s input and the computer’s output are easily distinguished.
The computer output begins in the left-hand margin while the input is in-
dented six spaces. In this book, the left-hand margin and the six-space in-
dention will be denoted as follows:

¢ u

where ¢ denotes the computer and u the user. Normally, the ¢ and u will
be omitted. A blank line, which sometimes gets typed, is denoted by the
character B in column one. The following simple examples are given for
clarification:

Sxy,2
21

10+20-1
29

3+8%2
7

2,5%2
6.25

When a statement is typed in the APL language, spaces (or blanks) may
appear anywhere except within a constant or a name, which names a con-
stituent of the language. Thus, spaces can be included, almost at will, to
improve readability. However, an APL statement cannot be continued on
another line. The conciseness of APL notation makes this a minor
restriction.

Two typing conventions are of special importance:

1. Several APL symbols are composed from two characters of the APL
alphabet by backspacing and overstriking. For example, the char-
acter d) is formed by typing O followed by BACKSPACE followed
by |. Similarly, the factorial symbol (!) is formed from a quote
symbol (') and a decimal point (.). Therefore backspacing and over-
striking are not permitted unless specifically intended. Although this
method is frequently used with some terminal systems for correcting
typing errors, it is an invalid practice with APL.

64 FUNDAMENTALS OF APL PROGRAMMING

2. Typing mistakes may be corrected by implementation-defined pro-
cedures. See Appendix B for procedures that have been established

e ADI \ 2LN
I AL \J0U,

Error Messages

Most sequences of operators, operands, and punctuation characters have
a meaning in APL. This is partly the result of allowing operators to as-
sume different interpretations depending upon whether the context is
monadic or dyadic. Thus, the lack of an error message for a particular
statement does not automatically guarantee that it serves its intended pur-
pose. On the other hand, a great many serious errors can be diagnosed by
the APL interpreter. A frequent example is the use of a variable* which
has not been defined. Assume the user types 48+12, where AB has not
been defined. The terminal sheet would look as follows:

AR+12

VALUE {|ERROR
AR+12
A

The error message is followed by the invalid statement followed by a caret
typed under the constituent that was in error. The error messages in-
cluded with the APL\360 system are included in Appendix B for ref-
erence purposes.

The Workspace Concept

A terminal connected to the APL system is said to be active. Associated
with each active terminal is a block of storage in the central computer
called a workspace. Contained in each user’s workspace is working stor-
age and control information for the current terminal session along with
variables (data values and their names) and defined functions (programs
and subroutines) used during the calculations. The size of the workspace
is fixed for each APL system and an inactive workspace can be saved in a
library designed for this purpose. System commands exist for loading,
saving, and modifying the contents of a user’s workspace.

4.3 NUMERIC CONSTANTS

Basic to all numerical computations is a means of representing numbers.

Although numbers are stored in a coded form internally to the computer,

the user of APL need not be concerned with this. He may enter his num-

*See Section 4.4

4.3 NUMERIC CONSTANTS &5

bers in one of two convenient forms: decimal or exponential. Clearly,
both systems use digits to the base ten, although decimal notation is prob-
ably more familiar to the average reader.

Characters Used in the Representation of Numbers

The thirteen characters 0 1 2 34 5 6 7 8 9.7 E can be used to rep-
resent numeric data. The digits are ordinary keyboard digits; the decimal
point is used interchangeably with the period; the negative sign should be
distinguished from the minus sign which denotes subtraction—close
observation will detect that the negative sign is raised to a superior po-
sition;* and the E, which denotes an exponent, is the same letter E fre-
quently used for constructing words. No embedded blanks, commas, or
other punctuation characters are permitted in APL numeric constants.

Decimal Form

Practically, any number can be entered in the decimal form, with the limit
being the size of an APL line. Twelve of the above characters (the E is
omitted here) can be used, and only those parts of a number that are
actually required need be written. For example, the number five may be
written 005, or 5, or 05.000, or even 5.00. Leading zeros and trailing
blanks are ignored. Additional examples are:

1.234x%x3
3.702

4-4,000C0
0

.000893+100
100.00{0893

On output, however, APL picks whatever form would represent a num-
ber in the simplest manner (see the following section on accuracy).

Use of the Negative Sign

The character ~, called the negative sign, is used to specify a negative num-
ber. As mentioned above, it should be distinguished from the minus sign.
For example:

*On the APL keyboard, the negative sign is found over the digit 2; the minus sign is
found over the + character; and another similar character, the underscore, is found over
the letter F.

66 FUNDAMENTALS OF APL PROGRAMMING

The negative sign may also be applied to an exponent in the exponential
form as described below.

Exponential Representation

It is frequently convenient to express numbers in a (fraction, exponent)
form called exponential form or scientific notation. For example, 30000000
is more succinctly written as .3 x 10® or as 3.0x 10". Similarly, .000000123
would likely be expressed as .123 x107° or 1.23x 10", Although it is true
that in APL 30000000 could be entered as 3.0x10+7, the operation re-
quires a multiplication and an exponentiation. Therefore, APL permits
constants to be entered in exponential form without requiring explicit
calculations by the computer. In exponential form, the letter E is used to
denote an exponent to the base ten; the remainder of the number follows
the same conventions as with decimal form. The following list gives sev-
eral examples:

Scientific Notation APL Exponential Form
3x108 3E8
123x107°° A23E76

—1x10" “1E10

—1.0x10°" “1.0E-13sameas " 1E" 13

Accuracy

The number of digits of internal precision carried by APL for a numeric
value is of casual interest to most users and of particular concern to those
working on precise calculations. Although the exact precision is 1m-
plementation-dependent, the APL\360 system at IBM Research carried
16 decimal digits* with the number being stored internally in the most
convenient form.

On output, the user has some control over the number of significant
digits that are printed. Ordinarily, the 10 most significant digits are
printed and trailing zeroes after the decimal point are suppressed.

1+9
0.11113111111

54
1.25

1E639

111113.1111

The system command)DIGITS (see Appendix B) enables the user to alter
the number of significant digits printed, with the number ranging from
one to sixteen.

*See reference (9).

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 67

Although the user may enter a numeric constant in whatever form he
chooses, that is, either decimal or exponential form, the computer must

mem smees em A am e me it

Lo PR S ISR I . P L P L
CNIoLsC ONC 01 LUIC WO WIICH PLIHIUNE T UILS., 111G 10HOWINE TUICS dArc

applied:

1. A fractional number i1s displayed with one leading zero regardless of
how it was entered.

0.

0.

c.

25

0.5555

0.3333

0.007

5

1

2.5E71

. 55555
5
1+3

333333
6c.007

2%y

.1

2. If a number is less than 1 E™5, greater than 1EN (where N is the
number of significant digits displayed—usually 10), or an integer
greater than 2* —1, then exponential form is used (note that the
value 2*'—1 is APL\360 implementation-dependent). Otherwise,
decimal form is used. Exponential form always prints a number
whose magnitude is between one and ten followed by an appropriate

exponent.

200000
2F11

1.23E77

2E5

2F11

.000000123

Two additional precautions are in order: (1) The number of digits re-
tained by the system may be less than the number of digits entered; and
(2) the APL system usually retains more digits than are printed. The
latter comment is particularly significant in tests for equality.

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS

One of the significant advantages of a programming language is the fa-
cility by which data, conditions, the state of physical devices, and con-

68 FUNDAMENTALS OF APL PROGRAMMING

stituents of the language itself can be assigned meaningful names and later
be referenced, conveniently, using the given names. In APL, names are
used most frequently in three ways:
1. To store information or the results of computation, either tempo-
rarily or permanently, for later recall using the assigned name.
2. Toidentify a user-defined function.
3. To name a workspace so that it can be saved and subsequently
reloaded.

A statement may also be named by what is known as a statement label,
and groups of names may be collected and given a group name for ref-
erence purposes. In this section, names used to identify data items and
workspaces are considered. Data items are then used as constituents of
statements and expressions, and workspace names are used with some of
the system commands. The presentation of function names and statement
labels is postponed until Chapter 6. By then, all of the necessary requisite
material will have been covered. Group names are considered in the
appendix on APL\ 360.

Basic Input to APL— Statements and Commands

Thus far, discourse between the user and the computer has been limited
to examples involving one or two operations and only a few characters.
Each line of input, which is typed at the terminal and transmitted to the
computer with the RETURN key, can take one of three forms:

. An APL statement.

2. A system command.

3. A response to a request for input from a statement containing one
of the input operations (see Section 6.4).

An APL statement is the means by which computations are performed
by the computer. A statement may specify one or more mathematical
operations, branching, input/output, or a combination of them. Other
statements are available for defining functions and for tracing or stopping
their execution. The following examples are APL statements:

2x3

M<2 3p.12
TADOIT<3 4 7 8
>(K>13)/LOOP
VR< A PLUS B
-0

The meaning of each of these statements will be made clear as the lan-
guage is developed. It should be noted in the preceding example, how-
ever, that no attempt has been made to indicate a computer response to

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 69

the statements, as was previously the case. The reason is that the APL
system has two modes of operation: the execution mode and the defini-
tion mode. When the system is in the execution mode, statemenis are
executed immediately after they are entered. The definition mode is used
to define a user function. In this mode, a statement is not executed* as it
is entered but serves to compose a function. A defined function must
eventually be invoked by an executable statement, and it is then that state-
ments from the function are selected for execution. Defined functions
may invoke other defined functions, etc. This process can be extended to
as many levels as are necessary. In the example which follows, the func-

tion PLUS is defined which adds two numbers.

YR+X PLUS Y (1)
11 ReX+Y (2)
(2] v (3
16 PLUS 20 (4)
30
10 PLUS ~20 (5)
10

Statement (1) establishes the function PLUS and puts the system into the
definition mode. Statement (2) enters a statement into the function being
defined. Statement (3) terminates the function definition and takes the
system out of the definition mode. Statements (4) and (5) are entered in
the execution mode and utilize the defined function, PLUS. All computa-
tions, regardless of whether they are defined functions, are initiated in
the execution mode.

Statements, as discussed, are part of the APL language and indicate
what operations the computer is to perform. There are times when the
user wishes to communicate with the computer system itself. For this rea-
son, system commands are defined which deal with the mechanical aspects
of using a computer, such as signing on or off or for saving, loading, or
copying a workspace. A system command may be entered only when the
system is in the execution mode of operation and begins with the right
parenthesis followed by appropriate letters or digits. The following ex-
amples give some sample commands:

)OFF
)LIB
)CLEAR

*In fact, a statement entered into a function is not checked for errors until the execution
of that statement is attempted,

70 FUNDAMENTALS OF APL PROGRAMMING

Although system commands are implementation-dependent (and treated
fully in Appendix B on APL\360), they can be generally classed as

[| PP
TOLIVUWD,

|. Terminal control (TC) commands which are used for initiating and
terminating a work session.

2. Workspace control (WC)commands which allow the user to modify
the state of his active workspace.

3. Library control (LC) commands which provide facilities for saving,
loading, and deleting a workspace.

4. Inquiry (1Q) commands which provide information on the status of
the active system.

5. Communications (CM) commands which permit the user to cor-
respond with other terminals.

System commands supplement the APL language by providing opera-
tional facilities which are primarily dependent upon the method of
implementation.

Identifiers, Simple Variables, and Workspace Names

In APL, an identifier is used to name a variable, a workspace, a function,
a statement label, or a group. An identifier 1s a sequence of the letters
A through Z, the digits 0 through 9, or the A character. A letter may
additionally be underscored for clarity or to indicate a data value of
special interest to the user. The first character of an identifier must not
be a digit, and the beginning sequences SA and TA are not permitted.
Operators, punctuation characters, and spaces delimit identifiers so that
the use of an embedded space specifies a different construct than the

identifier intended. Theoretically, an identifier may be of any length al-

though APL\360 limits variable and function names to 77 characters and
workspace names to 11 characters (see Appendix B). The following list
gives some valid and invalid examples:

Valid Identifiers Invalid Identifiers
AB12 1818
X M_N
Ma4 SAABC
PRIME TAX2
YPLUSAY AB.CD
SUMOFIMPORTANTVALUES XY
XTAT
AZ

A simple variable (usually called a variable) refers to the name given to
a scalar value by the operation of specification, covered in the next sec-

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 71

tion. Thus, a variable has two components—a name and a value. The
correspondence is established in the user’s active workspace for subse-
quent use.

A workspace name is the identifier assigned to an active workspace
when it is saved using one of the system commands. For example, the
command:

)SAVE ASPACE

stores the active workspace under the name 4 SPACE. At a later time, an
exact copy of that workspace may be recalled with the)LOAD ASPACE
command.*

The Specification Operation

The specificationt operator, that is, the left-pointing arrow, is used to
assign a value to a variable. For example, the first statement causes the

DENSITY+11.4
DERSITY
i1.4

value 11.4 to be stored in the active workspace with the name DENSITY,
which is said to be specified as 11.4. In this statement, the specification
operation is executed, the carriage is indented six spaces, and the key-
board is unlocked for the user’s next input. Once the variable, DENSITY

PP, PR .. | PRy, rroard no e e e o]

in this case, is assigned a value, then it can be used as an operand in other
calculations. Thus, complex calculations can be programmed using var-
iables such as this. Actual results obtained from the calculations would
reflect the latest values assigned to the variables used.

The criteria used by the computer for deciding whether or not to print
a result are of particular interest. Recall that in the multiplication opera-
tion, 5x4.2, the answer 21 is printed; but in the specification operation,
DENSITY < 11.4, nothing is printed. After a calculation or series of cal-
culations, three possibilities exist} for printing or storing the result: (1)

*It should be noted, here, that the }S4 VE command does not change the status of the
active workspace; that is, it is still available for use. Similarly, the)LOAD command does
not alter the saved workspace in computer storage. It may be reloaded as many times as

tIn other programming languages, the specification operator may be referred to as the
replacement operation, and the statement as a whole is called the assignment statement

1 The possibilities are not necessarily mutually exclusive

72 FUNDAMENTALS OF APL PROGRAMMING

The specification operation is specified as the last operation to be executed.
The result is assigned to the specified variable and no printing takes place.

PPN nee Emmmemdinae To o 2end oA mod s mds e @

(2) The Jpeciﬁcat‘i‘un operation is noit Jpeciﬁéd as the last operation to be per-
formed. The computer assumes that the user would like to see the result
and types it at the terminal. (3) The specification operation may be em-
bedded in a more complex statement. In this case, the assignment is made
and the result is used as an operand in another operation. This last case
is treated more fully in a following section on the order of execution. Ex-

amples of the preceding cases are:

5x12
60
SQUARE+«25,039%2
SQUARE
626.991521

A+1

25%A+A+1

625
A

Using the Value of a Variable

A variable can be used in any context that a constant can be used. How-
ever, as mentioned earlier, a variable must be assigned a value before
any operations can be satisfactorily completed. If the)ERASE command
deletes its referents from the active workspace, then the following ex-
amples exhibit the manner in which variables can be used:

X«2
X+1

JERASE X
X+1
VALUE |ERROR
X+1

A

X+10

X*x2

100
Y2
X*Y

100

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 73

A variable may be respecified. That is, a variable which has been de-
fined through a specification operation may be assigned another value by

. S, cem e m s o o a o Zon o A DI

—1 P TN T I TN (Y Y S TR B R . : .
PldacClllg Lldl vdariaolic Lo LIC ICIL O LIC specliiCation operdator in an Arb
statement. For example:

RADIUS+2
AREA<3 . 14159xRADIUS*2
ARCA

12.56636

RADTUS+1
AREA<3.14159xRADIUS*2
UREA

3.14159

In the first series of calculations, RADIUS is assigned the value 2 and
AREA 1s computed and specified as 12.56636. In the second instance,
RADIUS is respecified as |. Thus, the first value for RADIUS, which was
2, is replaced by the value | and only the latter value is retained. Sim-
ilarly, AREA is respecified as 3.14159. If it were desired to retain the first
value of either variable, then a sequence of statements of the form:

RADIUS+2
REA«3.14159xRADIUS*2
EMPR+«RADIUS
EMPAREA+ARFA

would be required.

One of the most frequent uses of a variable is to keep a count of the
number of occurrences of a particular event. Each time the event occurs,
the counter is increased or decreased by one. For example, assume that
TIMESREMAINING initially contains a value corresponding to the num-
ber of times a particular operation should be executed. Each time an op-
eration 1s performed, the variable is decreased in value. Similarly, as-
sume that / operates in a positive direction and is increased by one. The
following examples depict use of these variables under the given
circumstances.

74 FUNDAMENTALS OF APL PROGRAMMING

TIMESREMAINING+LIMIT
I+0

TIMESREMAINING+TIMESREMAINING-1

Both statements, exolndmo the initialization, exhibit a situation where the

same variable appears on either side of the specification operation. In
each case, the calculation is executed and then the specification is per-
formed. That is:

COUNT+1
COUNT

COUNT«COUNT+2
COUNT

COUNT+COUNT-1
COUNT

These examples have implied that the specification operation is always the
leftmost operation in a statement, This is not necessarily true, It will
become evident later that the specification is a dyadic operator, of the
ordinary variety, and that it may be embedded within a mathematical
expression,

Introductory Example—The Right Triangle Problem

The essence of computer programming is the synthesis of meaningful
calculations from a sequence of ordinary statements. With APL, an at-
tempt has been made to simplify the programming process as much as
possible by providing a programming language closely related to ordinary
mathematics. Yet, differences do exist and it is wise to mention them ex-
plicitly, even though most readers either know them or have suspected

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 75

them by now. The vehicle is a simple right triangle problem, shown as
follows:

h d=Vh +b
p=h+b+d

a=4bh

b

When h=3 and b=4, the problem is ordinarily stated as:

3
4
V3 4+42=5
p=3+4+5=12
a=4(4)(3)=6

h
b
d

In APL, the same problem would be stated as follows:

H+3

B+y
De((H%x2)+B*x2)*x .5
P+«H+B+D

A+ 5xBxH

D

P
12
A

[t is customary to refer to the preceding series of statements as a program,
even though the operational procedures were executed manually. This
leads to a more precise formulation of the two basic modes of operation.
In the execution mode, as evidenced above, statements are executed by the
computer as they are entered by the user. Responses, when appropriate,
are returned immediately to the terminal. In the definition mode, state-
ments are entered by the user and saved by the computer as a part of a
function definition. Later, when that function is executed by the com-
puter, statements are selected from the defined function automatically as

76 FUNDAMENTALS OF APL PROGRAMMING

execution progresses. In the automatic mode, printed results may be speci-
fied as part of the statement. These results are transmitted to the terminal

P s d e PR cme e b

as the particular statement is executed, even though the user makes no
explicit interaction with the computer.

Returning to the example above, some deviations from ordinary mathe-
matical notation should be mentioned. First, every operator has a sym-
bol, and that operation must never be specified by implication alone.

Thus, implied multiplication, as in the statement
a=14bh
must be made explicit with the appropriate operator, that is,
A< S5xBxH

Next, the keyboard /terminal arrangement restricts the line of input to a
linear sequence of characters. Therefore, operations such as the power
functions usually denoted by a raised or lowered argument must be indi-
cated by an appropriate symbol. In the example, the mathematical
statement:

d=Vh'+b
was given in APL as:

D« ((H*2)+B*2)*.5

Lastly, the equals sign (=) used in
h=3

to set a variable equal to a value is replaced by the left-pointing arrow:
H+«3

This convention allows the equals sign to be used as a test of strict
equality,

The Concept of a Program in APL

The notion of exactly what constitutes a program in the APL language is
frequently of concern, particularly to those readers familiar with other
programming systems. First, it is obvious that APL can be used as a desk
calculator, and as the remainder of the language is unfolded, other facil-
ities, amenable to the execution mode of operation, are presented. Next,
statements can be entered by the user and are executed immediately by the
computer. Since a program is nothing more than a sequence of state-

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 77

ments, possessing an implicit or explicit order of execution, and specifying
a computer-oriented representation of an algorithmic process, statements
even though the sequence in which statements are processed is determined
explicitly by the user. However, most computer users regard a program
as something that, once initiated, is executed automatically with no inter-
vention. This facility is also permitted in APL through defined functions.
In a general sense, an APL defined function may be similar in concept to a
mathematical operator or it may be a program (i.e., a series of statements)
which has been assigned a name. In the former case, a function defined as
an operator is used in a mathematical expression. In the latter case, a
function defined as a program is invoked by typing the name of that func-
tion as a single statement, This leads to an important point. When
APL is used, all computations by the computer are initiated from the
terminal, through either an executable statement or a defined function.

Compound Expressions, Parentheses, and Order of Execution

In ordinary mathematics, complex expressions that imply a series of
operations can be specified in one statement. In most of the APL ex-
amples given thus far, only one or two operations were denoted. The
reason, obviously, was to avoid problems relating to the structure of ex-
pressions and to the order in which operations are executed.

The structure of an operation in APL has two general forms, ap-
propriately termed monadic and dyadic. If m denotes a monadic op-
erator and d denotes a dyadic operator, then the structure of the two
forms is depicted as follows:

Monadic Operation Dyadic Operation
mR LdR

Here, L represents a constant, a variable, or an expression in parentheses.
R represents a constant, a variable, or an expression either enclosed in
parentheses or not. The precise meaning of this latter statement relates
to the order of execution, which is covered next.

The distinction between a monadic and a dyadic operation is obvious.
Given an operator that can represent either a monadic or a dyadic opera-
tion, such as the minus sign, which can indicate subtraction or unary
minus, the monadic interpretation is assumed if the symbol to its immedi-
ate left is another operator symbol. Consider the following expressions:

A+-B (1)
A-B 2)

78 FUNDAMENTALS OF APL PROGRAMMING

In expression (1), the minus sign denotes a monadic operator since the
symbol to its immediate left is another operator. In expression (2), the

,,,,,, ~ P, PR SR | e

minus sign indicates a dyadic operator because it is preceded by an oper-
and. The following examples give valid and invalid dyadic operations:

Valid Invalid
A+B 5X
(A+1)x2 (C10+M)T
—ZxW X+ AY

In textbook mathematics, familiar conventions exist for determining the
order in which operations are applied in a mathematical statement. In
the expression

ax+b
for exampie, the impiicit muitipiication of a times x is assumed to precede
the addition of b to the product. Ordinarily, conventions of this sort
cause little difficulty in spite of the facts that:

1. Multiplication may be denoted as ax, a-x, axx.
P . . a
2. Division is commonly specified as a+x, a/x, or =.
X

d

< [d
3. The power function a” s frequently interpreted as ((ab)) or as

a(b(fd’)

In a programming language, such as APL, with a multiplicity of oper-
ators and with facilities for defining functions, the assignment and use of
precedence relations among the operators and functions can be tedious,
cumbersome, and a potentially unmanageable situation. APL uses no
precedence relations and interprets and executes all expressions in a strict
right-to-left order.* Thus, any operator, function, or specification symbol

assumes as its rightmost operand the entire expression to its right. In the
following script:

2%x3+4
1y

*Iverson has a very interesting discussion as well as some sound arguments for the choice
of right-to-left execution in his book on Elemeniary Functions (16),

4.4 COMMANDS, STATEMENTS, AND EXPRESSIONS 79

the product of 2 and the sum of 3 and 4 are formed. Similarly:

A+11
B+6
100+B-4
T20
C+2
A-R-C

gihy+2

2x3%2
512
2*3x2
64
AxB+B3:2
33
B

w

C+-A-R

The right-to-left convention is not without disadvantages since most ex-
pressions are read from left to right and since most readers are familiar
with some conventions for the precedence of operators. As additional
operators are introduced for scalars as well as for arrays, it will become
increasingly evident that any inconvenience is certainly worthwhile.

How, then, is it possible to deviate from the right-to-left rule for execu-
tion? The answer is through judicious use of parentheses, which are in-
terpreted in the usual manner. That is, expressions within parentheses are
evaluated before the expressions of which they are a part. The use of
parentheses is extended to as many levels as is necessary. Several addi-
tional examples exhibit the use of parentheses:

(2x3)+4
10
A+S5+R+2x3
A, B
11 6
(99+A4)-R
3
Z+(2%X)+ Y14 X+-W+"2
X, Y, 2, W
2 3 |7 T2
(X+YIxZ+W
25
(Xx((3xX)+2))+1
17
IxXx2+2xX+1
768

80 FUNDAMENTALS OF APL PROGRAMMING

Since an expression within parentheses is normally used as a constituent
part of other expressions, it must have an explicit result (or value). Thus
an expression enciosed in parentheses must be well formed and adhere to
the structure for monadic and dyadic operators given above. The follow-
ing script depicts some well-formed and some ill-formed expressions
within parentheses:

A+15
(A)
15
(-4)
15
(A+)
SYNTAX| ERROR
(A+)

(+)
SYNTAX| ERROR
(+)

In several of the examples, more than one specification operator was
included in a single statement. This is termed multiple specification, which
also adheres to the strict right-to-left rule. Extreme care should be exer-
cised when using multiple specification, especially in cases where a vari-
able is a constituent part of an expression and is also multiply-specified
therein. Given the following examples:

A+ 2
B+«(A+3)xA
B

4+ 2
B+(A+3)x-A
B

In the first case, the specification within parentheses is executed first and
B assumes the value 9. In the second case, the unary operation (—A4) is
executed prior to the multiple specification and B is specified as 6. In
general, it is best to avoid expressions of this type.

4.5 PRIMITIVE OPERATORS 81

4.5 PRIMITIVE OPERATORS

A primitive operator is an operator that is defined as a constituent of the
APL programming language and is available to the user without having
to define it. Addition (+), subtraction (—), multiplication (x), and di-
vision (+) are common examples. A primitive operator is denoted by a
special symbol or composite symbol* in the character set and requires
either one or two scalar values as operands. A primitive scalar operation
always yields a result which is a scalar value, Appendix C contains a con-
densed summary of the primitive operation in APL. After the reader has
become familiar with the APL language, Appendix C will serve as a valu-
able reference.

One of the powerful features of APL is that scalar operations are ex-
tended to arrays on an element-by-element basis. Extensions to arrays
are covered in the next chapter after the most widely used primitive oper-
ations and mathematical functions are introduced.

Monadic Arithmetic Operations

The monadic negation operation was introduced earlier as a means of
changing the sign of an operand. For example:

A+-B+2
A
2
B
2
+B
2
-B
2
;|
SYNTAX ERROR
“B
A

Formally, the result R of the negation operation applied to an argument
B is defined as:

R=0-B
*That is, an operator formed by overstriking one symbol with another. For example, the

quote symbol (1), followed by a BACKSPACE, and overstruck by the period (.) forms the
composite symbol !,

82 FUNDAMENTALS OF APL PROGRAMMING

At this point, the reader is probably wondering if +, x, +, and even *
have monadic interpretations. Well, they do and are introduced here—
except for * which is covered in the section on exponentials.

The monadic operator + is termed the identity operator which returns
the value of the given operand. For example:

+10
10

A+=5

+A
~5

+°15
T18

Formally, the result R of the identity operation applied to an argument
B is defined as:

R=0+8B

The monadic operator x is termed the signum operator and returns
the value —1, 0, or 1 depending upon whether the operand is negative,
zero, or positive, respectively. For example:

A+"5

xA
x5

xA+5

Formally, the result R of the signum operation applied to an operand B
is defined as: *

R=(0<B)-0>8B
*At this point, it should be noted that formal definitions use other operators in the

language. Formal definitions are normally used for reference purposes, and the reader, in
his first reading of the material, could effectively branch around them.

4.5 PRIMITIVE OPERATORS 83

The monadic operator + is a convenient way of finding the reciprocal
of a value and is more convenient than using a division into 1. [t is ap-

,,,,,,,,, Ll 1 o
I

propriately named the reciprocal operator and is exhibiied as

Maa
HOWS,

5

+#5

1+45

Formally, the result R of the reciprocal operation applied to an argument
B is defined as:

20 nawaArsawns

R=1+8B

As evidenced by the formal definitions, the monadic arithmetic opera-
tions are a convenience rather than a necessity. However, the relevance of
a terminal-oriented system is directly related to the amount of typing re-
quired to get the job done.

Exponentiation

The dyadic exponentiation operation is commonly regarded as raising a
number to a given power. The operation uses the power operator * and
the operands are not restricted to integers, so exponentiation can be used
for taking square roots, cube roots, etc. For example:

5*2
25
25%,5
25%x %2

(3%3) %43

84 FUNDAMENTALS OF APL PROGRAMMING

The definition holds for the following cases:

1. A>0and B any value.

2. A=0and B>0.

3. A<0and B equivalent to an expression of the form M + N where M
is an integer and N is an odd integer.

Moreover, (4*0)=1 and (0%0)=1 but (0xB)=0, when B=0. For example,

FIVE<S
ZERQ+0
0*FIVE
ZERO*ZERO
FIVE*0O
5% 2

O*S-FIVE

Exponential

The monadic exponential operator * raises the mathematical value e to a
given power and thus eliminates inaccuracies resulting from entering that
value at different times. For example:

* 1
2.718281828
*x 1
0.367879u4412

Formally, the result R of the exponential operation applied to an argu-
ment B is defined as:

R=¢®
where e is stored as 2.718281828459045.
Maximum and Minimum
Many algorithmic procedures require that the maximum or the minimum

of two values be selected. APL includes, as primitive operations, two dy-
adic operators which perform these functions. The maximum operator T

4 5 PRIMITIVE OPERATORS 85

selects the algebraic largest of two operands while the minimum operator L
selects the algebraic smallest of its operands. For example:

A+, 25

B+, 3

AT B
0.3

(#A)L=B
3.333333333

(#A)l 3R
1Y

L -8
0.3

-BLA
0.25

Formally, the result R of the maximum operation applied to the operands
A and B is defined as:

R=4, ifA>8B
R=B, ifA<8B

Similarly, the result R of the minimum operation applied to the operands
A and B is defined as:

R=4, ifA<B

R=B, ifA>B

Floor, Ceiling, and Rounding

Many computer applications involve computations in the neighborhood
of a given value. In addition, it is frequently desirable to limit the result-

ing values to integers. The monadic operator L is termed the floor opera-
tion and gives the largest integer not exceeding the single operand. Sim-
ilarly, the monadic operator I is termed the ceiling operation and provides

the smallest integer not exceeded by the given operand. For example:

L3.1y
3

173,14
Ty

Fa.iy
1y

[T3.14
3

Ls
5

[s
5

86 FUNDAMENTALS OF APL PROGRAMMING

Formally, the result R of the floor operation applied to the operand B is
defined as: *

R=B-1|B
Similarly, the result R of the ceiling operation applied to the operand B
is defined as:
R=B+1|-B
The floor operation can be used to conveniently round a number to the
nearest integer or to a given number of decimal places. The accepted
practice for rounding a number to the nearest integer is to add one half

and to retain only the integral part of the result. In APL, this process ap-
plied to the value B is expressed as:

LB+.5
A similar expression for rounding the value B to N decimal places is given
as:
(10« -N)xL0.5+(10«N)x B

For example:

+33.3
L B+.5
33

C+77.7
L C+.5
78
IN+3

B+2%3

2

0.6666666667
(10*-”)*[0.5+(10*N)*B
0.667
(10%x-N)xL 0.5+(10*N)x1:3
0.333

Absolute Valuve

The absolute value function in mathematics is identified by vertical strokes
enclosing a single argument. For example, the expression

| o |
A1

*The meaning of the | operator is given later, formal definitions are included for refer-
ence purposes.

4.5 PRIMITIVE OPERATORS 87

denotes the magnitude of x, regardless of its original sign. In APL, the

absolute value operation is indicated by the monadic operator |, placed

ey
uvil

— o I [o e N Ry

in its usual position, and is defined on the expression to its right—
any other monadic operator. For example:

as

D+"5
D
5
17B*33
2
1373

0.3333]333333

is defined as:

Formally, the result R of the absolute value operation on an operand B

or as
R=BxxB

Comparison Operations

When the values of 4 and B are known and posed with the question, “‘Is 4
greater than B?” one can usually respond with the answer yes or no. In a
computer, the truth values rrue for yes and false for no must be repre-
sented by symbolic values, and the values chosen can be of major signifi-
cance. In APL, the truth value true is represented by the scalar value |
and the truth value false is represented by the scalar value 0. Thus, the
result of a comparison can be used in arithmetic calculations much like
any other numeric value. Six comparison operations are incorporated
into APL as primitive dyadic operators:

Operator Meaning
< less than
< less than or equal to
= equal to
> greater than or equal to
> greater than
- not equal to

In fact, the six operators are conveniently located, 1n sequence, over the
numeric characters 3 through 8 on the APL keyboard. The six compari-
son operators are further defined in Table 4.1. Like any other dyadic

88 FUNDAMENTALS OF APL PROGRAMMING

TABLE 4.1 COMPARISON OPERATIONS

Truth value Truth value Truth value
if A is less if A is equal if A is greater
Expression than B loB than B
A<B 1 0 0
A<B 1 1 0
A=B 0 1 0
A>B 0 1 1
A>B 0 0 |
A=B 1 0 1

operator, a comparison operator adheres to the right-to-left convention
for anthmetic. For example:

5>4

S«<y

A+6

B+5

C+y

A>B+(C
(2xB)=A+C

C>A>B

(Note that in the last two interactions with the computer, the right-to-left
rule significantly affects the result.)

When dealing with floating-point numbers, the question of how close is
equal is of importance. The comparison operations as well as floor and
ceiling are dependent, to some extent, on how close in magnitude numeric
values have to be before they are regarded as equal. This tolerance is
termed fuzz, and in APL\360 it is set, approximately, to 1.0E-13. When
computing is done with only a few significant digits, as in integer arith-
melic, tests of equality are of little concern. On the other hand, the
following examples indicate cases where equality can be of concern:

4.5 PRIMITIVE OPERATORS 89

0.3333333333333333=0,333333333333333334

(]

(5+10% 12

[5+10%"13

Fuzz is used in the formal definition of the comparison operations.
Formally, the result R of a comparison applied to Operands 4 and B
is defined as:

R=1 R=0
if if
A<B (A-B)<-FUZZx | B otherwise
A<B (A-BY<FUZZx | B otherwise
A=B (|A-B)<FUZZx | B otherwise®
A>B (A-B)>—-FUZZx | B otherwise
A>B (|A-B)>FUZZx | B otherwise
A=B (|A-B)>FUZZx | B otherwise?

FUZZ+—10E"13

21t operands A and B are characters (see Section 5 2), then R=1 if the
relationship holds. otherwise R=0

Logicol Operations

Logical operations are ordinarily used to form complex expressions from
the truth values of one or more logical events. In APL, a logical event can
take the form of a scalar data item which has the value 0 or | or it can be
the result of an operation. A 0 or 1 truth vaiue can additionally resuit
from arithmetic computation. The APL language contains five logical
operations: and, or, not, nand, and nor. And, or, nand, and nor are fre-
quently referred to as connectives and are dyadic operators. Not is a
monadic operator.

The connective and is represented by the symbol A and returns the value
1 if both operands are 1. For example:

ia1
1
1A0
0
(3<2)AS5>4

90 FUNDAMENTALS OF APL PROGRAMMING

The connective or is represented by the symbol V and returns the value
1 if either or both of the operands is |. For example:

ovo
ivo

(3<2)v5>y

The unary operator ~ (tilde symbol) is termed the not operation and
returns the value 0 if its operand is 1 and returns | if its operand is 0. For

example:

~1
0

~0
1

~(3<2)v5>4
0

~(3<2)A5>4

The nand operation is a composite operation commonly referred to as
not and. Accordingly, it uses the dyadic operator A, formed from a A, a
backspace, and a ~. Nand returns the value 0 if both operands are 0 and
returns | otherwise. For example:

(3<2)n5>y
Ing

(100<1)n2>200

The nor operation is a composite operation commonly referred to as
not or. It uses the dyadic operator ¥, formed from a V, a backspace, and
a ~. Nor returns the value 1 if both operands are 0 and returns a 0
otherwise. For example:

4.5 PRIMITIVE OPERATORS bl

Oo~»0
{3<2)¥5>y

(100<1)»2>200

Since the operands of logical operations are limited to the values 0
and 1, the result of the dyadic operations can be formally defined by truth
tables. They are given as follows:

Ao 1 vio0o | A0 1 ¥10 1
010 0O 010 1 o111 1 o1 O
1to 1 | | 1 0 1 {0 O

The result R of the not operation applied to operand B is defined as:
R=1=8B

where Bmust beaQOora l.
Operands are restricted to 0 or | values as depicted in the following
script:

(3<2)vi-2
DOMAIN| ERROR
(3<2)vi-2
A

2vi
DOMAIN ERROR
2vi

A
1A1V1ALAD

Residue
In many computational procedures, it is necessary to compute the residue
R of a numeric value B modulus another value A4; that is:

REB(mndA\

S fay

If A and B are both integers, then R is the remainder after dividing
B by A. APL extends this facility by allowing the arguments to be non-

92 FUNDAMENTALS OF APL PROGRAMMING
integral and nonnegative. The residue operation uses the dyadic operator
symbol |, the vertical stroke, and has the following form:

A|B

the letters 4 and B correspond to those in the above definition. For
example:

A+2

B+17

AlB
1

Als
0

Al13.4
1.4

5/713.4
1.6

1.513.4
0.4

As evidenced in the above examples and described in the formal defini-
tions, below, the result of the residue operation is always positive. The
order of the operands is of particular interest. Because of the right-to-
left rule and the fact that an operator interprets the expression to its right
as its rightmost operand, the residue operation can be applied to a com-
pound expression without requiring parentheses. The value of the follow-
ing statements is | (for true) if the value of the expression to the right

.

SR ol Tt U P MRS S DENE NS
Ol LNC resiauc operator 1s divisipl€ Dy Z:

X+3

0=2|1+X*3
1

X+2

0=2|1+X*3
0

Formally, the result R of the expression A | B is defined as follows:
R=B-—(|A)xB+|A, ifA=0
R=8B, if A=0and B>0
R is undefined, if A=0and B<0

93

‘Ajuo

sjuswndire jevndo Ipindwos ui pajussaadas anpeaisaieand—4 . 1aindwos ul patuasasdal anjea 1samo ‘o1ugeainbs - = pasdeyny ur uoruyap 32
| 1, P | P p | | 3 ! y Y Se

q

4.5 PRIMITIVE OPERATORS

(g ~g=0~0=¢g 0 o} |enba 10N »;
g§=0<4 0 ueyy 1918310 .
g=1<g i 01 jenba 10 uey) 1918310 3SIMISY0 () <

g=1=g=g=1 I 01 Jenb3 ‘SpjoY J UONBJRI Y} JI [= g1y =

g=g>1 [01 |1enba 10 uey} ssa] >

g§=4>0 0 ueq) ssa] 0 0 I | | I S

10N 0 I I 0 0 1 4

pueN 0 I I 0 I 0 ¥

g = 8gAN0=0Ng 0 10 I | 0 0 0 0 A

| §=84VI=1Vg I puy gV g¥v dNV gy g8 ¥V V

g =g~ 10N ~

g=g|0 0 1=¢|¢ NPpIsaY g-19=9| njea njosqy _

p8 =g =Alg 4 =11¢ wnuiurin 10014 1

2H=H) =114 ¥ S=TI¢ wnuwixepy gl1-g=4) 3unia)]

g=1+4 _ ST=Tx*S PMod g+ 8TBIL T =g+ [enuauodxg »

g=1+4 I C'T=7+¢ apialqg g+1=§g+ leso1dinsy +

g=1xXg=gXx] | 9=¢XxT ssuit], (0>g)—-(0<g)=gx wnugig X

g§=0—4 0 gE=C—¢ Snurjy g§-0=8§- aanedoN -

g=g+0=0+g 0 C=g+7 snid gro=g+ finuapp +
ajdwpxyg swawialg ajdwoxy LPUIDN a)dupxy DN joquidg

Amuapy 40 Julups py 40 Zuluva py

uonp1a4diatuy J1podq

uo1pia4daatuy 21pouo py

SNOILVYY¥3IHdO JAILIWIRID ' 318VL

94 FUNDAMENTALS OF APL PROGRAMMING

Summary of Primitive Operators

The primitive operators are the basis of the computational capability in
APL. Specifically they include the monadic and dyadic arithmetic oper-
ations, the comparison and logical operations, residue and absolute value,
maximum and minimum, and floor and ceiling. The primitive operators
are listed in Table 4.2.

4.6 MATHEMATICAL FUNCTIONS

The mathematical functions in APL supplement the primitive operators
by supplying resources frequently needed in numeric computations.
Clearly, all of the mathematical functions utilize the primitive operations,
presented in Section 4.5, and could be effectively programmed using some
ingenuity and mathematical expertise—which was obviously done in the
early days of computer programming. Yet, routines included within the
programming system provide accuracy and precision and relieve the user
of the chore of doing everything himself. From a cost-effectiveness stand-
point, prewritten functions are far superior. APL goes one step further
than most programming systems. Not only are the routines included in
the APL system, but operator symbols have been selected for them as well.
Both monadic and dyadic functions exist, and they are used in a similar

fashion to the primitive operations.

Generalized Combination and Factorial

One of the fundamental identities in mathematics and statistics is the
binomial theorem, frequently expressed as:

n

n_ n! kpn—k
(a+b) _,‘Z_; Kin—k)! ° b

The coefficient n!/k!(n—k)! is commonly known as the binomial coeffi-
cient and is usually abbreviated as (}) or C;. In the latter case, C} is
usually interpreted as the number of combinations of n things taken & at a
time, Forexample, C3 = 3. In mathematics, n is not restricted to integers
and the function is known as the complete beta function. APL contains a
mathematical function to compute the binomial coefficient* which uses
the dyadic operator !, a composite symbol formed from the quote symbol,
a backspace, and a period. Thus, the binomial coefficient (¥) is repre-
sented in APL as K!'N. For example,

*Called the generalized combinarion because of its extension to nonintegral values.

4.6 MATHEMATICAL FUNCTIONS 95

N+6

3w
20

(7-2)'10-2
56

1,3!8,9
14,369427854

w'!"7
0

Formally, the result R of the generalized combination of N things taken
K at a time is defined as:

R=(N)=(K)xIN-K
and is related to the complete beta function as follows:
Beta (K,N)=+Nx(K-1))K+N-1

The definition of the generalized combination function uses another
mathematical function, which is also widely known. Usually called the
factorial, it gives the number of arrangements of » distinct objects in a
row. In APL, the factorial function uses the monadic operator ! and gives
the product of the first N positive integers, that is, Nx(N-1)x(N-2)...1.
For a nonintegral operand, the factorial function is equivalent to the
gamma function of N+1. The following examples also demonstrate an
obvious restriction:

'3
6
12x5
3628800
1.5
1.329340388
171,55
T3.544907702
172
DOMAIN| ERROR
172

A

Formally, the result R of the factorial function on operand N is defined as:

R=Nx(N-1)x(N-2)...2x1, for0=1|N;
R =undefined, for (0=1| N)A("1=xN); and
R=TN+I1, otherwise.

96 FUNDAMENTALS OF APL PROGRAMMING

Random Number Generation

APL contains two built-in functions for generating pseudo-random num-
bers. Both appropriately use the question symbol, ?. The monadic in-
terpretation, called roll, that is, ?N, selects an integer pseudo-randomly
from the first N positive integers. The dyadic version called deal, that is,
M?N, creates a vector of M components selected pseudo-randomly from
the first N positive integers without replacement. A discussion of the
deal function, which uses the concept of a vector, is postponed until
Chapter 5. With the monadic roll function, any integer in the range 1 to
N has an equal chance of being selected. For example:

?5
1

210
8

77
m

The roll function uses a starting number for generating the random re-
sult. In APL\360, it is initially set to 16807 or 7«5 and is modified each
time a random number is generated. The starting number is termed the
seed, which is stored along with a workspace. The seed for a clear work-
space is always the initial value given above.

Logarithms

The age-old definition, **A logarithm is an exponent,” is useful for re-
membering the operator symbol for the logarithm functions, which is the
composite symbol ® formed from the circle O and the exponentiation
(or power) operator *.*

The monadic form of the operator is defined as the natural logarithm.
It is written as ® N and computes the expression: log,N. The dyadic ver-
sion of the operator computes the common logarithm so that M®N is
defined as the logy N. For example:

@ 2
0.6931471806
@x 1

1
(*x1)e2
0.6931471806
10e1

0
10e2
0.30101299957
10@2x3
0,7781/512504

*The circle Ois found above the O on the APL keyboard.

4.6 MATHEMATICAL FUNCTIONS 97

Antilogarithms can be computed by exponentiation using the familiar
relations:

1. If L=In N, then antilog,(L)=e“=N.
2. If L=log, N, then antilog,(L)=b"=N.

For example:

X+10e3
Y«10eu
10xX+Y
12

Formally, the result R of the natural logarithm applied to operand N is
defined as:

R=In N
or
N=*R

Similarly, the result R of the common logarithm applied to operands M
and N is defined as:

R=logy N
or
R=(@N)-®M

Pi

A familiar problem to most computer users doing scientific work involves
the exact value of w. The first problem usually requires a secondary
decision regarding how many places to include once the value has been
looked up in a table. APL contains a monadic function, which uses the
operator O, and is defined as pi times the operand; that is, # x NV is written
ON. For example:

01
3.141592654
R +2
oR%x?2

FUNDAMENTALS OF APL PROGRAMMING

98

N yuel L N queidle N|<I
N Usod 9 N Usoddie | <N
N yuis S N quisdole
S HT*N) 14 Cx(T*NF1) [<N
N 1u23ue)] £ N uelDIE N <t
N QUuIS00 rd N Sodale N| <1
N 2uls I N dulIsale N | <1
¢(T*N—1) 0 TN 1) [>N
N JO
NOW W NO(W —) uuioq uonouny
Ie[noai) N X2 = NO sawn 14 0
wyeso| wyilredoy
NHBo|=N® W uowwo’) NU=N® [eimeN ®
Juawde(darinoyiim A7 wolj NOT
Ajwopuel pajoa[as sjuauodwod gy Jo 10109A = N [ead Wwolj a210yd Wopuel = A/, oy ¢
Cit=0¢ vi=+vT
Y-Ni*x(YD)+(Ni)=Ni¥ uoneuiquo) X2 (I =N)XN=Nij [et10108 4 i
aydwoxg QDN ajdwoxyg WD N
40 uupa py 40 Burupa py joquds
uonpviaadiauy 21podq u011p124d431u] 21pDUO IV
SNOILDONNA TVDILVWIHIVW €% 119Vl

4.7 ANNOTATED SCRIPT OF APL FUNDAMENTALS 99

Formally, the result R of the monadic pi function applied to operand N
is defined as:

R=axN
where

r=3.141592653589793

Circular Functions

The circular functions, commonly known as the trigonometric functions,
are defined in APL as the dyadic interpretation of the operator ©. Each
of the circular functions, defined in terms of radian measure, is assigned
an identifying number which serves as the left operand. The right operand
is the value to which the function is applied. The functions are identified
in Table 4.3. Thus, l0O0+6 is the sine of =/6 radians, which is one half.

| Sy PRE
r'or cxamipic:

THIRTY+0(1%6)
10THIRTY

FORTYS5+0%U4
10FORTYS
0.7071067812

X+« (100#4)12004+4
X

Y+« 30X
(o1)+Y

The following list presents the frequently used circular functions:

sin X: 10X arcsin X: “1OX
cos X: 20X arccos X: 20X
tan X: 30X arctan X: 30X

4.7 ANNOTATED SCRIPT OF APL FUNDAMENTALS

If there is any truth to the saying that a picture is worth a thousand words,
then an annotated APL script is probably worth much more. Therein lies
the subject of this section. First, some important comments regarding the
order of operands is required.

A Commenf on the Order of Operands
In spite of the fact that operations in a statement are executed in a right-
to-left sequence, the established order of operands is maintained in most

100 FUNDAMENTALS OF APL PROGRAMMING

cases. For operations that are commutative, such as addition and multi-
plication the order is not signiﬁcant In noncommutative opcrations

ey U e e =

for example,
A + B means A divided by B
and

A+*B means A raised to the power B.

In other operations, such as residue and the circular functions, no
formal order of operands has been established. In fact, B(mod A4) is ex-
pressed in APL as 4 | B. It is here that the right-to-left order of execution
is of prime significance. Clearly, an operator, regardless if it is monadic
or dyadic is defined on the entire expression to its right, except when

.......................... tha actalaliclha ~rmdan AL na :

B8l Uupmg lllUlbd.l..Cb a ucpcu ture llUlll tne CDldUll)llGU uluael 1 G:\GDULIUII ln
the residue operation, denoted as A4 | B, the operand B is more likely to be
the result of a series of computations than the left operand 4. Similarly,
with the circular functions, for example sin X written as 10X, the argu-
ment X is more likely to be the result of an expression than the function
designated |. Thus, the convention of placing the operand that is more
likely to be computed on the right is consistent with the right-to-left order
of execution.

4.7 ANNOTATED SCRIPT OF APL FUNDAMENTALS 101
Script of Primitive Operations ond Mathematical Functions
® Terminal preparation and dial up
11234567
004) 01.02.0301/01/70JSMITH Initiating a
Terminal Session
APL\360
242 Simple operation—input line is indented
y Computer response—not indented
32 Exponentiation is denoted by an asterisk.
9
25+2 Division—numbers expressed in standard form.
12.5 Computer suppresses trailing zeros for printing.
11.89-2
9.89
X+5xu Assignment of the value of the expression to X.
X1 Add | to X and print result.
21
YERASE X Delete variable X from workspace,
X
VALUE [ERROR X is no longer defined.
X The statement in error is printed.
A _ Caret denotes the error.
X123T7+5% 2 Multicharacter name for variable—power operation— negative
X1237T constant.
0,04
(#X123T)*.5 Monadic operator + denoting reciprocation.
5
Yelx3+X+2 Right-to-left rule and multiple specification.
Yy Display Y.
20
X Display X.
2
Z+.00000123F6 Exponential form of numeric constant
Z
1.23 - Computer chooses how result is displayed
A+ 75.1 Negative constant.
_ xA Signum function (monadic).
1 Result is ~ | if operand is negative
A+0 Respecification of 4
x4
0 Result is 0 if operand is zero.
x13
1

Result is | if operand is positive

102 FUNDAMENTALS OF APL PROGRAMMING

A+2

34
SYNTA% ERROR

3 4

A

3IxA
o

--="5
5

*]1
2.718281828

[a.iu
I

L3.1u
3

1075
10

10L5
5

5x10L5
25

A+"10

Al -4
10

A+ A

A
10

B+3

BlA
1

B<A
1

(A>0)-A<0
1

(5>4)A5<10
1

ovil
1

'3
6

2ty
6

?s5
1

o*]
1

10e2
0.30149299957

01
3.1418392654

100(1%6)
0.5

JSAVE ASPACE
15.54.21 12/20/69

Implied multiplication?
Nao!' Not pgrminpd

2aiaaniia,

Every operation requires an operator

Monadic operators have no left operand.

Power of the mathematical constant e

Ceiling—-the smallest integer which exceeds the operand
Floor -the largest integer not exceeding the operand.
Maximum (dyadic form)

Minimum (dyadic form).

Compound expression (right-to-left rule)

Expression for the absolute value of 4

Monadic absolute value operation
A assumes a new value

A (modulus B).
Comparison operation gives a I{true) or O(false) result

Expression for signum function (right-to-left rule) with
parentheses denoting grouping

Logical and

Logical or

Factorial (operator is a composite symbol)
Generalized combination (dyadic). i e., (3_)
Random number between | and 5

Naturallog Ine.

log 192
Pi times (monadic circle symbol)
Sin 30 degrees (in radians)

Save workspace under the name ASPACE
Time and date saved

4.8 COMMENTS ON THE REMAINDER OF APL 103

4.8 COMMENTS ON THE REMAINDER OF APL

APL achieves its power as a system for computing and for programming
in five ways:

1. Through a rich assortment of primitive operations and mathe-
matical functions.

2. By allowing the user to process arrays directly and by providing
a variety of operations on arrays.

3. By permitting the user to define functions and to effectively write
programs.

4. With appropriate input and output operations.

5. By including extensive program checkout facilities.

A study of these topics is a study of computing itself.

Because APL is useful to people with a variety of backgrounds and
problems, the sequence in which the remainder of these topics is reviewed
is of importance. The experienced reader should go directly to **Arrays
and Operations on Arrays,”’ covered in the next chapter. The reader
being exposed to computing for the first time could go to Chapter 6 for an
exposure to the major topics in computing and then return to arrays at a
later date. Similarly, the user with a few simple calculations could also
go directly to Chapter 6, although the use of arrays might simplify his
programming considerably. Operations on arrays are not fully appreci-
ated, frequently, until one is faced with the cumbersome task of program-
ming the same functions using elementary operations. The array oper-
ations in APL are inclusive and serve as an excellent reference on the
subject. Those faced with implementing similar algorithms in other
languages might first look to APL.

5 ARRAYS AND
OPERATIONS ON
ARRAYS

5.1 BASIC CONCEPTS

Most computations deal with single data values called scalars. This is so,
perhaps, because most people are accustomed to thinking in terms of
single values—regardless of whether they lend themselves to the physical
situation at hand. Suppose, for example, that a market researcher stands
on a street corner, for a period of time, and counts sporty automobiles of
a given make. He might come up with the following list:

Total
Category Number Name Number Observed
| Rivtera 7
2 Toronado 4
3 Thunderbird 6
4 Eldorado 5
5 Mark 111 2

Clearly, each total of observations for a given category is a scalar value.
Yet, the scalar values collectively form a family of related items. In this
case, each value is a count giving a number of automobiles. The list of
totals can also be interpreted as a linear sequence of values called a vector.
Each value has an index given by the category number. The index can be
used to select a value from the vector. For example, the index 4 would
denote the value 5, which is said to be the fourth component of the vector.
The concept is easily extended to other dimensions. If the above observa-

104

5.1 BASIC CONCEPTS 105

tions were repeated for each of five days, then the following collection of
data might result:

Day
1 2 3 4 5
I 7 5 7 6 9
2 4 3 2 5 3
Category 3 6 8 8 7 6
4 5 2 3 4 5
5 2 0 3 I 4

where the total observations for category 2 on day 3 is the value 2;
here, the value 2 is selected by two indexes: the row index and the column
index. A two-dimensional collection of values is termed a matrix. A
vector or a matrix is a special case of a collection of related data called an
array, which is extended to as many dimensions as are required by a given
application. In the above example, a three-dimensional array of data
values would be created if observations were taken on several street
corners, that is,

Corner Day
1 1 2 3 4 5
1 7 5 7 6 9
2 4 3 2 5 3
Category 3 6 8 8 7 6
4 5 2 3 4 5
5 2 0 3 I 4
Corner Day
2 I 2 3 4 5
1 10 5 8 3 9
2 2 5 4 6 2
Category 3 8 5 9 4 5
4 0 3 2 4 5
5 1 4 2 1 3

The total of observations corresponding to the indexes (2,4,1), denoting
corner 2, category 4, and day 1, is the value 0. An array with more than
two dimensions is called, appropriately, a three-dimensional array, or a
four-dimensional array, etc. If a component (often called an element can

106 ARRAYS AND OPERATIONS ON ARRAYS

be denoted by an index, then it is not necessary to give a unique name to
each individual value, and only the array, as a whole, must be named.

Thus, a variable name is given to an eniire array of daia items and
an element within the array is selected by an appropriate number of
indexes termed a subscript. If the three-dimensional array given above
were assigned the name AUTO, for example, then the subscripted name
AUTO[I1:1:5] would denote the value 9. In computer terminology, each
index is termed a subscript, so a vector array needs one subscript, a matrix
needs two subscripts, a three-dimensional array needs three subscripts,
etc. Subscripts are treated in more detail in succeeding sections.

It is not difficult to imagine situations where it is more convenient to
regard an array as a whole rather than distinct elements. If one wanted
to display every element of a vector, for example, it would be more

convenient, and economical as well, to simply give the name of the vector
and let the computer print the elements, regardless of how many there
were. This is where APL achieves its power as a programming language
and as a means for describing the functional characteristics of discrete
systems. Primitive operations and mathematical functions are extended to
accept arrays as operands, and additional functions are defined, primarily,
for use on arrays. In treating entire arrays, two items are of significance:
the name of the array and the dimension of the array. A vector has one
dimension, which is the number of elements. Similarly, a matrix has two
dimensions: the number of rows and the number of columns. It follows
that a three-dimensional array has three dimensions, a four-dimensional
array has four dimensions, etc. The dimensions of an array are conve-
riently referred to as its size. For some array operations, the size of the
operands must agree. In others, it is necessary that the size be known
and operators are available for obtaining this value.

5.2 VECTORS AND VECTOR OPERATIONS

In APL, a vector of numeric values is created by typing the numbers with
at least one intervening space between components. The vector can be
used in an expression, much like a scalar operand, and the result is stored
in the active workspace by using the specification operation. When a
vector is created in this way, the components must be constants and may
not be scalar variables. Later, methods are presented for forming arrays
from scalar variables and from arrays which aiready exist. For example:

[T
V<3 .5 16 7.4 10

5.2 VECTORS AND VECTOR OPERATIONS 107

Thus, V is specified as a vector of five components. The size of V is
determined and saved automatically by the APL system and the user need
not be concerned with the bookkeeping aspects of array processing. As
with a scalar, an array may be displayed by simply giving the array name:

Element-by-Element Operations
The primitive operations and mathematical functions defined for scalars

are extended to arrays on an element-by-element basis for operands of
the same size. For example:

A+l 2 3 4
B«t 7 8 9
A+B

7 9 |11 13 15
C+A+1 2 3 4 5

5
10

c
2 4 |6 B 10
1 23 45 -4
0o o0 o o o
A x A
1 4 |9 18 25
-A
"t T4 T3 T4 Ts
A

1 0.9 0.3333333333 0.25 0.2
1|

1 2 |6 24 120

A+2 2 2 2 2

0.5 1 1.5 2 2.5
A+2 4 6 8 10

0.5 Q.5 0.5 0.5 0.5
A%x3 3 3 3 3

1 8 27 64 125

A<B

1 1 1 1 1

A>B

0O 0 jo o0 o0

108 ARRAYS AND OPERATIONS ON ARRAYS

E+'27 12 16.8 6E25 0
+«0 12 ~123.4 13 99,873
2D
0o 1 8 1 o
«1 0010
AC2D
0o o0 o 1 o
EvCzD
1 1 p 1 o
C=E
o 0 o o 1
crp
0 12 |16.8 6E25 99,873
Ic
27 12| 16.8 B6E25 0
P+1 "1 2 O
% F
2.718281828 0.367870u4412 7.389056099 1
C+F
LENGTH, ERROR
C+F
A
1 2 3x30 20 10
30 40 30
A+2 3 4
Ax3
8 27| 64

The last two statements which are included in the previous example
should be noted. In the statement, 4+« 2 3 4, the variable A4 is respecified.
Although it previously existed in the active workspace with a dimension of
5, it now has a dimension of 3 with components 2, 3, and 4. This leads
to an important fact. Computer storage is maintained dynamically in
APL. The size of an array never needs to be specified and the system
uses whatever storage is necessary. In the statement, 4*3, each compo-
nent of the vector A4 is raised to the third power. The operation uses a
vector and a scalar. This exhibits an important point. If a scalar is
used in an element-by-element operation with an array, then it is used
with each component of that array. Further examples will clarify the
latter point:

5.2 VECTORS AND VECTOR OPERATIONS 109

A+«13 7256 59,67 0
A>0
1 ¢

i

2|1 2 3 4 56

1 0|1 o 1 o0

A+6 7 8

A+l

7 8 |9

B«1 2 3

C+«B+2xA

c

13 19 19

A+«2 4 6 8 10

Axg>5

0 o0 |6 B8 10

A+«1 2 3 4 5 6 7 8 9 10 11 12
Ax0=3]4

0o 0 |3 0 0 5 O 0 9 0 0 12
UNGL+014+6 4 3 2

1 OANGL

0.5 0l.7071067812 0.8660254038 1

[
<

Two final remarks on element-by-element operations are in order. First,
element-by-element operations are extended to arrays of higher dimen-
sions, even though methods for their generation have not been introduced
as yet. Second, when an operation is performed on two arrays or an array
and a scalar, it applies uniformly to all components of that structure.

Subscripting

Given an array, regardless of how it was formed, how is a specific element
selected for display or for use in computation? The answer is with a
subscript, denoted by square brackets. For example, A4; is represented in
APL as A[I] and is interpreted to be the /th component of the vector A.
The square brackets must follow the array name or array expression, and
a subscript may be a constant, a variable, or an expression. A subscript
may even be an array as noted later. For example:

I<2
V<2 4 6 8 10
vi1]
2
VLIIl+vII+2]
12
2 34546 789
g 10] 12 14
(2 3 4 546 7 8 9)[3]
12

110 ARRAYS AND OPERATIONS ON ARRAYS

[f more than one subscript is required, then they are separated by semi-
colons. Given the matrix,

1 2 3 4
M=|5 6 7 8
9 10 11 12

stored in an active APL workspace, the subscripted variable M|[2;2]
indicates the value 6 while the subscripted variable M[3;4] denotes the
value 12. A subscripted variable can also appear on the left-hand side of
the specification arrow or in any context that a scalar variable can be used.
For example:

12

-
rn1
L&J

[y

3.768 .4E 13 6
113.768

= = -

“12 113.768 4E"14 6

The APL system offers some protection against referencing nonexistent
values. If an attempt is made to select an element not in the range of

an array, the system responds with an appropriate error message; for
example,

V<2 4 6 8
VLiI+1]
VALUE |ERROR
VviI+1]
A
I+2
viI+7]
INDEX |ERROR
VLI+7]
A
ViI+1]

Generating a Vector

One of the difficulties in dealing with arrays is the typing of long se-
quences of numbers. When the numbers represent distinct data values,
no alternative method for entering the information exists. But, when the
numbers are the same or are consecutive integers, something can be done.
The monadic form of the operator iota, that is, 'N, generates a vector

5.2 VECTORS AND VECTOR OPERATIONS 11

of length N which contains the positive integers 1 through N. The iota
function has several names of which index generator is perhaps the best
known. Here, N must be a positive integer. For example:

N+5
\N

14

1 2 |3 4
12xN

1 2 i3 4 5 6 7 8 9 10
V+16

(16)x2
1 4 9 16 25 36

The above definition permits a vector with a length of zero to be denoted.
The expression (0 creates a vector of zero length, termed an empty vector,
and if a specification operation is involved, assigns it to the given variable.
For example:

10

b
V10
|4

b

Thus, a vector with a zero length prints as a blank line, which is reason-
able for a variable that is regarded as empty. A scalar variable, on the
other hand, may not be empty, and the language contains no facility for
making that specification. Another method of generating an array is
through the dyadic version of the operator p, called rho. The function
is commonly known as the reshape function, although the precise meaning
of that particular terminology will not become evident until matrices are
discussed in the next section. When M is a scalar, the function MpN
generates a vector of length M using the operand N. If N is a scalar,
then it is repeated M times in the generated vector. If N is a vector
and its size is less than M, then it is repeated cyclically. If the size of
N is greater than M, then the first M components are used. For example:

112 ARRAYS AND OPERATIONS ON ARRAYS

When M is equal to zero in the reshape operation MpN, an empty vector
is created. The result of the reshape operation is always an array.

Dimension of a Vector

The monadic interpretation of the operator p gives the size of a vector
although the precise definition is also more general and applies to arrays
of higher dimension. Applied to a vector V, pV gives the number of
elements in V. Applied to a scalar N, pN generates a null value which
prints as a blank line. For example:

V+3 5 45E12 100 67 ~.00123 8
pV
7
Vx0=3|1pV _
0 0 |4.,5E13 0 O 0.00123 0
Wer 0
pW
0
p10
0
p0pl100
0
p3xy
b A+lpl
A
u
pA
1

T'\ﬂ mnnnl‘l;n n nmaratbtnr ﬂl“fﬂllﬂ MLy an s [9F-Ya¥ Fa¥ o L] .-Aﬂlll.' TLA “Ilmkl‘-
LG HHIVHaUIv JF UpLlatul aiwadyds givid a vyLLilul das a 10ouUll. 1L1I1C HULNnuUci
of components in the result is equal to the number of dimensions* in the

*Later the dimensions of an array will be referred to as the coordinates of an array.

5.2 VECTORS AND VECTOR OPERATIONS 113

operand. Thus, a scalar has no dimension, a vector has one dimension,
a matrix has two dimensions, etc.

Forming a Vector

It was stated earlier that methods are available for creating arrays (al-
though the present discussion is limited to vectors) from scalar and array
variables that already exist in the active workspace. The comma is used
as the operator symbol in one of two ways: (1) As a monadic operator
it denotes the ravel operation which is a means of creating a vector from
either a scalar or an array of higher dimension. It is useful for operations
which require that an operand be a vector. (2) As a dyadic operator, the
symbol denotes catenation and chains scalars or vectors together in the
usual fashion. After a catenation operation, the dimension of the re-
sultant vector is the sum of the number of data items in the two operands.
For example:

V+5
oV

V+,5
|14

eV

V<10 20
W+30 40 S0

XV, W

X

10 24 30 u0 50

V,2E13

10 20 2E13

Ye13,W

Y

13 3Q 40 S0

A+3+B+2

C+{(Ax2),(B%*3)},0

C

25 8o

"68.3,1.23 6

“68.3]| 1.23 &

74.1 T109.3 16=7u.1,°109,3,16
1 1 jt

When catenating scalar constants, it is only necessary to separate them
with one or more spaces. When catenating variables, the dyadic catena-

114 ARRAYS AND OPERATIONS ON ARRAYS

tion operator must be used. The concept also applies to expressions—
although the right-to-left rule applies and the user should exercise caution.
Consider two examples:

A+2
B+3
(Ax2),2xB-1
4
Ax2 2xB-1
4 16

In the first example, the value of the expressions A*2 and 2xB—1 were
computed and then catenated. In the latter case, 2xB—1 is computed,
catenated to the scalar 2, and A is raised to the power indicated by the
catenated vector. Parentheses are useful for avoiding ambiguity—even if
it is only on the part of the user.

It was also mentioned that a variable must be specified before it could
be used. The rule applies to all operators of the language including

catenation. This is demonstrated in the following example:

YCLEAR
CLEAR (WS
Vel 2 3
W,V
VALUE {FRROR
W,V
A
W+10
W,V
i 2 |3

Catenation provides a convenient method of accumulating values, once
the process has been started as in the previous script. A familiar example
is the Fibonacci sequence where the ith term is the sum of the (/—1)st and
(i—2)nd terms; for i >3. A one-line program to add a term to the sequence
is given in the next script:

FIB+«0 1 2 3 5 8
FIB+«FIB,FIBL (pFIB)-11+FIB{pFIB]
FIB

[o a
£ 3 2 o 42

<
[N

5.2 VECTORS AND VECTOR OPERATIONS 5

Catenation explains the form of output used in some previous examples.
Recall that statements of the general form:

A+24B+14C+2
A,B,C
5 3 {2

were used. It is evident now that a vector of the form (5 3 2) is formed
by catenation, and then and only then is the result printed.

Vector Reduction— Summation, Product, and Similar Functions

Assume that the market researcher, mentioned in the beginning of this
section, desired to perform some elementary calculations on his data. For
example, he might be interested in the total number of observations, the
maximum value, and the minimum value for a given day. Ordinarily, he
would have to prepare a repetitive program as follows:

Sum Maximum Minimum
. Set SUM+0, l. Set MAX+0. . Set MIN<10FE10, or
. Setf< 1. 2. Set [<1. a very high value.
. Add the Ith compo- 3. Compare the Ith . SetI+1.
nent to SUM. component with . Compare the /th
. SetI+1[+1. MAX. component with

. If I'is greater than the
size of the vector,
stop; otherwise, go to
step 3.

W

. If MAX is greater

than or equal to it, go
to step S; otherwise
replace MA X with
the /th component.
Set I+ 1[+1.

. If I'is greater than the

size of the vector,
stop; otherwise, go to
step 3.

MIN.

. If MIN is less than or

equal to it, go to step
5; otherwise replace
MIN with the Ith
component.

. Set I« 1+1.
. If I'is greater than the

size of the vector,
stop; otherwise, go to
step 3.

In APL, a composite function called reduction achieves the same result in
one operation. The general form of a reduction operation is: ® /V, where
@ is a dyadic primitive operator or mathematical function, the character
/ 1s known as the solidus, and V is a vector expressed as a variable or
the result of an expression. Reduction is defined as follows:

®/V=V[l|eV[2]eV[3]... V[(pV)-1]®V([pV]

116 ARRAYS AND OPERATIONS ON ARRAYS

The dyadic operations are performed from right to left in the usual
fashion. Thus, for example:

DAY1+7 4 6 5 2
SUM<+/DAY1
MAX<[/DAY1
MIN<l/DAY1

SUM ,MAX ,MIN

24 7| 2

'3

x/13

V<6 4 10 17 3
AV+-(+/V):pV
4

SD«(((+/V*2)+pV)~((+/V)+pV)*2)=.5
5D
5.099019514

A defined function (see Section 5.3) may not be used as the operator in
reduction; the reduction operation is extended, appropriately, to arrays of
higher dimension. Clearly, the reduction operation applied to a vector
reduces it to a scalar, hence the name. In general, reduction reduces the
number of dimensions* in an operand by one. The capability of applying
the same operation to all elements of an array is very useful. Thus far,
it has been used for summation, product, maximum, and minimum. It

can also be used in a logical sense to determine if all components possess

a given property or if any component possesses another property. For
example:

X«"1 2 5 "4 19
NerpX
A (X=N)20
0
v/ (X=xN¥)<0
1
Af1 2 3 4=14
3
v/(1pA)xA«1 2 3 4 5 6 7
0

*Later, the number of dimensions in an array will be referred 1o as its rank, so that
reduction reduces the rank of an array by one.

5.2 VECTORS AND VECTOR OPERATIONS 117

Reduction of a vector of dimension zero gives the identity element, as
listed in Table 4.1. Reduction of a scalar or a vector of one component

mdt e 1o L . .

gives that value. That is:

+/10
*/0p1
x/75§

-/1p5

Character Data

A great many interesting and useful applications of computers involve
data that are not strictly numeric. Text exiting, information retrieval,
message dissemination, formula manipulation and theorem proving,
record keeping, and data processing are only a few examples. Therefore,
any programming system without facilities for processing nonnumeric
data is severely limited in scope. In fact, most scientific applications
require, minimally, that comments and column headings be printed. APL
permits character data to be entered, processed, and output—as required
by a particular application. Character data are enclosed in quote symbols
in APL to distinguish them from the name of something or a construct
in the language. One character is interpreted as a scalar item so that
sequences of characters form an array. For example:

A«"ABCD25+!
pA

AL 3]
AlpAl
B+«'123u45"
B{yJerp!

B
12375

A series of characters enclosed in quote symbols is termed a literal,
which can contain any keyboard character including composite symbols

118 ARRAYS AND OPERATIONS ON ARRAYS

and the space character. Since elements of a literal array are restricted
to single characters, there is no need to distinguish between them and they
nnnnnnnnnnnnnnnnn atn o N

nea mmeremdard wariébi onces femd - PR Thao o Y Yy .
alec plllllcu WILIUUL HICLVCILNE Spatud. 111V Juulv Lilalavivi, u

ad Ao ~

8€a as a
delimiter for literals, is a special case. If it is to be used in a literal,
then it must be represented by a double quote. For example:

A«*BE CAREFUL OF THE SYMBOL ''¢t*'!?
A
BE CAHEFUL OF THE SYMBOL '¢!
pA

28

It should be noticed that literals are printed without the enclosing quote
symbols.

In general, arrays with characters as components can be processed as
numeric arrays except for the following cases:

1. An operation or function whose domain is strictly a numeric value is
not permitted.
2. Numeric and character arrays may not be intermixed.

Thus, character arrays may be generated, catenated, indexed, compared
(for equality only), and used with the same utility functions as numeric
arrays:

Sp'X?
XxXxxx
A« 'MISSION®
«~'"" ' TMPOSSIBLE' !
B
12
.B
MISSTOW'IMPOSSIBLE'
1] B

MISSI 'IMPOSSIBLE"
«'123A456B7890101112D"
6pA

123A45
'LOOP'=*'LOCP!

1 0 o 1

'LOOP'='LOOP!

o 1 1 o
C1+'ABCDEFGHIJKLM'
C2+'ABCDEFGHA1JKLM'
AJCL=C2

5.2 VECTORS AND VECTOR OPERATIONS 119

Character data require some interpretation. A single character enclosed
in quote symbols is a scalar; all other constructs are interpreted as

2L _ ____1

vectors—including the null sequence:

S«vA
pS

V<0p'L"
4

Wep!?
W

oW

Mixed Output

Although arrays of mixed data* cannot be stored, arrays can be inter-
mixed for output (and for output only) by separating the nonhomoge-
neous data with a semicolon. Spaces are not inserted between the mixed
data items in the print line.

1,23 SQUARED IS '3;1.,23*»2
1.23 UARED IS 1.5129

AME«'JANE®

+«34

«24

«34

AME ' ' 'S MEASUREMENTS ARE: 'iB,W.H
JANE'S| MEASUREMENTS ARE: 34 24 34

Summary of Vector Operations

A brief summary of the vector operations presented in this section (i.e.,
Section 5.2) is included here for reference and for review,

1. Specification. Numeric vectors are entered as:
V<(C, C, C, - C,

where C; is a numeric scalar constant and C; is separated from C;,,
by at least one space. A character vector is enclosed in quote sym-
bols and called a literal; each character becomes a component of the
resultant vector:

V<'4,4;45.. .4,

*That is, character and numeric data.

120

ARRAYS AND OPERATIONS ON ARRAYS

where A; is any character in the keyboard (including composite
symbols and spaces. Within a literal, a quote symbol is represented

ra wam e

hy fwo Gia ke
Oy {tWO quote marks.

. Element-by-element operations. Where @ is an appropriate opera-

tor, an expression of the form:
Vew

computes the ® operation on the vectors in an element-by-element
manner. If either operand is a scalar, then it is extended to all com-
ponents of the other operand.

. Subscripting. If I is a scalar constant or scalar variable, then:

40

selects the /th component of the vector V. V[I] may be used in a
scalar expression or may appear to the left of a specification arrow.

. Generation. A vector may be generated in two ways. The index

generator:
N

generates a vector of length N which contains the positive integers |
through N. The reshape function:

MpN

generates a vector of length M using the operand N. If M is greater
than the size of N, then N is repeated cyclically. If the size of N is
greater than M, then the first M components of N are used.

. Dimension. The dimension of a vector V is given by:

pV

If V is an empty vector, than (p¥) = 0. If the operand is a scalar,
then the result is a null value which prints as a blank line.

Formation. A vector is formed from existing constituents in two
ways. The monadic ravel operation:

M

creates a vector from the operand M. If M is a scalar then a vector
with one component is formed. If M is a higher-dimensioned array,

and arrays of higher dimension). The catenation operation:

M,N

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 121

chains the operands together in the usual fashion. The dimension of
the resultant vector is the sum of the dimensions of the operands.

7. Reduction. The reduction operation of the form:
®/V

applies the dyadic operator @ to all elements of the vector ¥ in the
following manner:

VitleVi2]... Vi(pV)-1]@V][p V]
where the right-to-left rule holds in the above expression.

8. Mixed output. Numeric and character data may be intermixed for
printing by separating the nonhomogeneous data with a semicolon.

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION

Nearly everyone is familiar with matrices and their indexing properties.
In the matrix A, for example, the component A[[;/] is the scalar value
found in the /th row and the Jth column. In arrays of higher dimension,
however, indexing properties are not as well known—and frequently lead
to some confusion.

Consider the problem of stringing out the components of a matrix in
some order. Two methods can be identified by inspection: row major
order and column major order. Applied to the matrix

8 7 1 9

A=174 2 3 6

0 -5 4 1

A S i v R
the two lists would appear as follows:
Row Major Order Column Major Order

Component Indices Component Indices
8 All:1] 8 A(l:1)
7 A[l;2] 4 A[2:1]
1 A[l:3] 0 A[3:1]
9 A[l:4] 7 A[1.2]
4 A[2:1) 2 A[2:2]
2 A[2:2) -5 A[3:2]
3 A[2;3] 1 A[l;3]
6 A[2:4) 3 A[2:3]
0 A[3:1] 4 A[3:3]
-5 A[3;2] 9 A{l:4]
4 A[3;3] 6 A[2:4]
1 A[3:4] 1 A[3:4]

122 ARRAYS AND OPERATIONS ON ARRAYS

The indices appear most naturally* in row major order, and that method
is referred to in APL as index order. Whenever the components of an
array are unraveled, they always appear in index order. Similarly, con-
sider a three-dimensional array as follows:

13 14 15 16
(1) 17 18 19 20
21 22 23 24
B=

1 2 3 4

(2) 5 6 7 8

9 10 II 12

3)

where the numbers in parentheses indicate the first coordinate, the second
coordinate, and the third coordinate, respectively. For example,
A[2;1;3]=15. In index order, the array is listed as follows:

Component 1 Indices
1 B[1:1;1]
2 B(1;1;2]
3 B(1:1:3]
4 B[1;1,4]
5 B[1;2;1]
6 B[1:2;2]
7 B[1:2;3]
8 B[1;2:4]
9 B(1:3:1]

10 B(1:3;2]
11 B{1:3:3]
12 B[1;3;4]
13 B(2;1;1]
14 B[2;1;2]
15 B(2;1;3]
16 B(2;1:4]
17 B[2.2;1]
18 B(2;2,2]
19 B[2;2;3]
20 B[2;2;4]
21 B[2:3:1]
22 B(2.3;2]
23 B[2:3:3]
24 B[2:3:4]

*See Knuth (19)p 296

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 123

Is there a means of visualizing higher-dimensional arrays? Not in general
but the following technique will usually suffice:

1. Visualize a vector as a horizontal row of components.

2. Visualize a matrix as a rectangular arrangement of components.

3. Visualize a three-dimensional array as a sheet of paper containing
one or more matrices—each of which is termed a plane (as shown
above).

4. Visualize a four-dimensional array as a book of sheets of paper, each
containing a three-dimensional array.

5. Visualize a five-dimensional array as a library of books (or four-
dimensional arrays)—rarely will the user need to go beyond five
dimensions, although the idea can be easily extended.

Then, a component of an array is conceptualized as follows:

AlS; 4; 7; 3; 4]

|—> 4th column

3rd row
7th plane or matrix on page
— 4th page in book
— 5th book in library

It should be noted that higher-dimensional arrays are synthesized on a
right-to-left basis from vectors, matrices, three-dimensional arrays, etc.

Generating a Matrix or an Array of Higher Dimension

=l Ro iy YRLIDID 3 w2l

used to generate a vector from a scalar or another vector. The left op-
erand, that is, M, was a scalar and determined the dimension of the
vector. A logical question might be, **What structure would be generated
if the left operand were a vector?” The answer is that an array would be
generated and the dimension of each coordinate is determined by the
value of the respective component in the vector, For example, the ex-
pression;

When discussing vectors, the reshape function of the form MpN was

3 4pl

generates a matrix with 3 rows and 4 columns where each component is
the value 1. Thus, the /th component of the vector left operand indicates
the extent of the Ith coordinate of the generated array. In the examples
which follow, an array of dimension two or greater is printed for the first
time. Higher-dimensional arrays are printed as matrices and are indented
from the left margin.

124 ARRAYS AND OPERATIONS ON ARRAYS

M«3 up1l
M

11
ﬂ 1

1
M[2;3]+«0
M

-
-

11141

[y
[~

1
1

(WYY

IN«2 2p14

IM+3 4p112

12, o
o N
~ W
@ F

Ty
L+ 2
(I,J)p 7 3 96 514 3

F A0
W= w

(o1l)]

It should be noted that the array (matrix in the above examples) is formed
from the right operand in index order. As with vectors, the right operand
is used cyclically. If it contains more than the necessary number of com-
ponents, then only those required are used. The concepts apply to char-
acter arrays and higher-dimensional arrays as shown in the following
examples:

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 125

2 3 ULp24

w
(=)}
~]
@

{10 11 12

13 |14 15 16
17 |18 19 20
21 |1 22 23 24

We3 2 2p'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
W

AB
cn

EF
GH

IJ

¥vr
1Y 7]

WL1:2:2)+W[2;1;2)¢W03;2;1]«" !
W

IJ
L

1 5p15

5 1pa5
1
2
3
n
5
31 1p13
1
2
3
4+5 0p3
A
]
|pA
5 0
A+(10)p3
A
3
pA

126 ARRAYS AND OPERATIONS ON ARRAYS

The last two statements require further explanation. In the reshape op-
eration, of the form MpN, the result is an empty array if any component
of M is zero. If M is the empty array, then the result is a scalar. If Mis a
matrix or an array of higher dimension, then the elements of N are taken
in index order. That is,

4«2 2p
4
1 2
3y
3 2 2pA
1 2
3y
1 2
3 i
1 2
a0y
B+2 3p16
3 2pB
1 2
3 4
5 6
B
1 2 3
u s &
Be? 6pA+4 3p 7 3 96 51 4 38027
"7 3 9
6 S5 1
4 3 8
o 2 7
k]
"7 3 9 6 5 1
4y 3 8 0o 2 7

Shape of an Array
The monadic rho operator (p) applied to a vector gives the dimension
(or size) of that vector. The result is always a vector so that, when deal-

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 127

ing with a nonempty vector V, (ppV)=1. When applied to a matrix on a
higher-dimensional array, the monadic rho operator (often called the
dimension OpEraior ot the size 0p‘c"i'ﬁi0f) glvca a vector whose components
denote the number of components in each of the dimensions of the array.

For example,

M«3 Lup5
oM

3 u
N+l 1p7
oN

1 1
N

7

The rank of an array A is specified as:

ppA

and gives the number of indices (i.e., subscripts) necessary to select a com-
ponent of A. For example:

M+«3 u4p5
ppM

2
N+l 1p7
ppN

2

ppl 2 3 yptcAT!

The following list gives dimension and rank vectors for frequently used
arrays:

Operand (A) pA ppA pppA
Scalar 0 1
Vector 1 1 1
Matrix IJ 2 1
Three-dimensional IJK 3 1

Py J

Gii p o |
Jele Ul (L")

Although subscripting is essentially a dyadic operation, it appears differ-
ent from other dyadic operations in that left and right brackets are used

128 ARRAYS AND OPERATIONS ON ARRAYS

as operator symbols and that subscripts, which are actually operands, are
separated by semicolons. The use of square brackets to enclose sub-

nnnnnnnnnnnnnnn baley Faemaciline b, tho Af n gormian] o comannta

>l lplb ID lCdDUlldUl_y ldlllllldl Uul. lllC Uusc o1 a SCmMiCoIon lU acpaldu: BuU'
scripts has probably puzzled the curious reader. The answer lies in the
fact that a subscript which is ordinarily taken to be a scalar has been ex-
tended, in APL, to include arrays. Thus a subscript can be a vector or a
matrix or a higher-dimensional array and the quantity selected has the
same form—but obviously not the same value. Therefore, a semicolon
is used to separate structured subscripts. This extended form of sub-
scripting is generally known as indexing and the subscripts are called
indices.

When the array being indexed is a vector, then the result R of the index-
ing operation VF[N] has the following properties:

1. R is formed by selecting from vector V those components whose

noo nera tha Amarnad

Y b LY
inaices arc lllC vpLialiu v,

2. (pR)=pNand(ppR)=ppN.
For example:

V« 7 3 96 514 3
Vi1 3 4 7 8]
7 9| 6 u4 3
I+ 3

VLIl

7 3| 9

W+V[6p2 6]

W

3 1]33 1 3 1
WW«VL 4]

WW

pWW

WWW+V[, 4]
WWW

pWWW

VEipV]
7 3 9 6 5 1 y 3

In general, if the index for a coordinate is omitted, then the entire co-
ordinate is assumed. In the previous example:

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 129

The index to a vector can also be a matrix or an array of higher dimen-
sion and properties (1) and (2) above hold. That is:

V"7 3 96 51 4 3
Me3 2p6 2 7 5 4 3
YiM]

R
o W

A+'AEFORTW?
m*S 3p6 2 1 3 4 56 7 U

6 2 1

3 4§ 5

6 7 u

ALM])
TEA
FOR
THO

An indexed variable, of the variety presently being discussed, may ap-

pear to the left of the specification operator, and only the selected com-
ponents are affected. That is:

V«'TEAARORTTWO®

v{y 81«

4
TEA F TWo

V[31«'GIN!

V,' SOUNDS BETTER!
GIN P TWO SOUNDS BETTER

When the array being indexed is a matrix, then the result R of the in-
dexing operation W[M;N] has the following properties:

I. R is formed by selecting from W those components whose row
index is M and column index is N,

2. (pR)=(pM)pNand(ppR)=(ppM)+ppN.

Careful analysis of the second property reveals that succeedingly complex
results are developed by using higher-dimensional arrays as indices.

130 ARRAYS AND OPERATIONS ON ARRAYS

b+3up-739651438027
7 3 9 6
s 1 u 3
8 o 2 7
M[1 231 2]
7 3
5 1
JM[ia;zu]
3
0o 7
ML2;1 3]
5 i
N«2 2p1 2 3 2
A«M[N ;2]
pA
2 2
ppA
2
A
3 1
0 1
ML2;:N2
5 1
y 1
BeM{ ,2:N]
o B
1 2 2
o p B
3
B
5 1
v
A+«M[N;1 3]
pA
2 2 |2
ppA
3
A
"7 9
5 Ul
g 2
5 4

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 131

[f the row index is omitted, all rows are assumed, and if the column index
is omitted, all columns are assumed. That is:

Me3 Up112
M[;2 u1]
2 Y
6 8
10 12
M[3;1
9 10 11 12

The concepts are extended systematically to arrays of higher dimension,
* both as arrays being indexed and the indices themselves.

Ordinarily, the lower bound for a coordinate index is 1 and the upper
bound is the dimension of that coordinate. For example, the first com-
ponent of a vector 4 is A[l] and the last component is A[pA]. This is
generally known as [-origin indexing. 0-origin indexing is permitted to
satisfy certain classes of applications, and the origin applies to other

functions in the language as well. The system command:
YORIGIN 0

is used to change the origin from 1 to 0 and
JORIGIN |

is used for the reverse process. In 0-origin indexing, the first component
of a vector A is A[0] and the lastis A["1+pA4]. For example:

V7 8 9 4 3 1
oV
1 2 |3 4 5 6
VlipV]
7 8 |9 4 3 1
Vi1 3 5]
7 9 |3
JORIGIN O
WAS 1
oV
0 1 12 3 4% 5
ViipV]
7 8 {9 4 3 1
Vi1 3 51
8 u4 |1
11
0
JORIGIN 1
WAS ©
11
1

132 ARRAYS AND OPERATIONS ON ARRAYS

The indexing origin also affects the coordinate axis, all operations in-
volving indices, and the random number functions.

Fundamental Operations

Analogous to the operations and functions which are defined on scalars
(and extended systematically to arrays), APL contains a wealth of func-
tions designed to facilitate the use of arrays. They are treated in the next
section, which covers functions on arrays. The remainder of this section
is concerned with a brief exposition of scalar operations and functions
and vector operations as they are extended to arrays of higher dimensions.

As with vectors, element-by-element operations apply to arrays in the
usual manner. For example:

12 14 16 18
20 (22 24 26

LMs3
0o 0 1 1
1 2 2 2
a3 3 u
[M:+3
1 1 1 2
2 2 3 3
3 W 4 oy
M
1 0.5 0.3333333333 0.25
0.2 0,1666666667 0.1428571429 0.125
0.24111111111 0.1 0.09090909091 0.08333333333

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 133

3 M

O N
= O N
N = O
O NP

b+3 4pl13-112
1>N

=)

= OO0

e o
[y

i+«3 5pl1 0 1
V<3 5p1 1 0 1 1

===
[
= O =
[B Y
= = 0

[y
[N
o)
[
[N

AV

[

[d
o
O -
P

C+z 2 3p112
I’ -3

2 1] 0O
1 21 3

4 5 6
7 8 9

Clearly, the extension of monadic scalar operations and functions to
arrays does not require further definition. Dyadic operations and func-
tions are extended on an element-by-element basis but only under the
following conditions:

I. One of the operands is a scalar.

2. The arrays are conformable, that is, the same size.
3. One of the arrays is a single-element array of any rank.

Further, if two single-element arrays are used as operands, then the rank
of the operand with the greatest rank is chosen for the result. For
example:

134 ARRAYS AND OPERATIONS ON ARRAYS

Me3 U4pr12
M+N«1 1 1p10

11 |12 13 1y
15 |16 17 18
19 |20 21 22

N

10
pN

1 1 |1

P«1 1p5
Q«N+P

15
p&

ppQ

The ravel operation when applied to a matrix or an array of higher
dimension generates a vector whose components are the components of
the array taken in index order. For example:

Me3 H4p112

LY
o
~
@

The result R of the ravel operation on M is always a vector, so the fol-
lowing relationships hold:

(pR)=x/pM
(ppR)=1

The catenation of two arrays requires a ravel of the two operands and a
catenation of the two resultant vectors. The result of catenation is al-
ways a vector, although the result can be reshaped as required. For
example:

5.3 MATRICES AND ARRAYS OF HIGHER DIMENSION 135

M<3 uyp'a?
N«2 up'p’
5 Yp{ M}, ,N
AAAA
AAAA
AAAA
BBBB
BBBR

The result R of the operation satisfies the following properties:

(pR) = (ﬂ,M)+,0,N
(ppR) = 1

As logical extensions of scalar operations and functions, fundamental
operations on arrays provide a basis for a class of functions defined
primarily for array processing. They are divided into two groups: com-
posite functions and mixed functions. Composite functions, which in-
clude reduction, inner product, and outer product, are extensions to
arrays of the dyadic scalar operations and functions. Mixed functions
include the remainder which are generally classed as not being primitive
functions or composite functions.

Summary of Fundamental Array Operations

A brief summary of fundamental array operations presented in this sec-
tion is included here for reference and for review:

1. Generation. An array A is generated as:
MpN
where M is a scalar or vector giving the coordinates of A, and N is
an array whose components are used cyclically.

2. Shape. The monadic operator p gives the size of an array:
pA

The result is always a vector and each of its components gives the
dimension of a coordinate of the operand. The rank of A is specified
as:

ppA

and gives the number of subscripts (or indices) necessary to select

a ramnanant A0 A
a \rUlllPU IVIIL VI .

3. Indexing. The concept of a subscript (or index) is extended to in-
clude arrays as indices so that a single index can select one or more

136 ARRAYS AND OPERATIONS ON ARRAYS

components of an array. Ordinarily, 1-origin indexing is used; how-
ever, with the JORIGIN command, the index origin may be changed
to 0 and back to 1.

4, Element-by-element operations. Scalar operations and mathemati-

cal functions apply to matrices or a component-by-component basis.
Thus, in an expression of the form:

M®N

the operator is applied to both operands which must be conform-
able. If either is a scalar, it is extended to all components of the
other operand.

5. Ravel. The ravel function
A
yields a vector of the components of A4 taken in index order.

6. Catenation. Two arrays can be catenated by raveling the operands
and then executing a vector catenation:

(,4),.B

5.4 FUNCTIONS ON ARRAYS

Several functions on arrays, such as reduction, perform an operation
along one of the coordinates of an array. Therefore, it is important to
identify which number goes with which coordinate. In the matrix gen-
erated by the expression,

M<3 4p.12
there are three rows and four columns. The coordinates are numbered
by their index in the vector generated by the monadic rho operator. Thus,
pM is equal to 3 4; the dimension of the first coordinate is 3 and the

dimension of the second coordinate is 4. Similarly, for the three-dimen-
sional array 2 3 4p.24, the following dimensions apply:

Coordinate Dimension
1 2
2 3
3 4

If 0-origin indexing is used, then there is a 0 coordinate. The versatility
inherent in origin indexing requires, minimally, that the first and last co-
ordinate be identified. Therefore, if no coordinate is specified for a func-
tion on an array, then the /ast coordinate is assumed. Special provisions

5.4 FUNCTIONS ON ARRAYS 137

apply to the first coordinate. For example, reduction along the first co-
ordinate is indicated by the composite symbol #, which is a solidus over-
struck by a minus symbol.

Reduction

Reduction is applied along the /th coordinate of an array with an expres-
sion of the form

®/[I4

where @ is a dyadic operator and A is an array. For example:

H+2 3p16
+/011M
5 7 |9
+/021M
[3) 15

(+/021M)=+/M

N<2 2 3pr112
N

1 2 3
4 5 6
7 8 9
10 (11 12
x/[11N

7 |16 27

Reduction effectively reduces the rank of an array by one. Special cases
are treated in the preceding section under vector reduction.

Inner Product

The familiar matrix product of the form:

b b
anana e anby +anby +anby anbp+apbn+a;sby
byby | =

anana; b b anby +anby +anby anba+anbin+anby
11 032

1s expressed in APL as:

ClLJ)=+/A[L]xB[;J]

138 ARRAYS AND OPERATIONS ON ARRAYS

The preceding operation is termed the inner product and is written more
succinctly in APL as:

A+.xB
and i1s characteristic of the class of functions:

Af.gB

where fand g are primitive scalar operations and mathematical functions.
For example:

A<2 3p16
B«3 2p7-16
C<A+.xB
c
20 |14
56 |u1
B<«3 3p19
A+.xB
30 |36 u2
66 81 96
U<2 2p1 0 0 1
V<2 2p1 1 1 0
U
1 0
01
vV
11
1 0
Uv.AV
11
10

The dimension of the last coordinate of the first operand must agree
with the dimension of the first coordinate of the second operand to satisfy
a conformality requirement. As shown in the next examples, the inner
product applies to a combination of vector and matrix operands:

5.4 FUNCTIONS ON ARRAYS 139

A<3 3p19
X<2 4 6
BeA+ . xX

B

28 B4 100

X+, xA

60 72 8u
X+.%x3 5 7
68
J«2 2p1 0 0 1
V<1 ©

A, vl

Given the result R of the inner product Af.gB, then the following

. I

definitions apply:

Type of Operands Definition
Vectlor R=f/AgB

Vector and matrix R[I]=f/AgB|;!]
Matrix and vector R[l]=f/A4[11gB
Matnix and matrix R(LJ)=f/A[L]gB[:/]

where I and J are scalars. In all cases, the following identities apply:*

(pR)=(C"1¥pA) 1 {pB
(ppR)= ((ppA) +ppB)-2

Ovuter Product

The familiar multiplication table is an example of multiplying each com-
ponent of one vector by all components of another. That is:

X 1 2 3 4
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16

In APL, the outer product of vectors A and B is written Ao.x 8 where
the component in the /th row and the Jth column is defined as:

R{LJ]|=A[I]xB[J]

*The 1ake function of the form 14 B is decribed subsequently.

140 ARRAYS AND OPERATIONS ON ARRAYS

As with inner product, the definition applies to the scalar dyadic opera-
tions and functions. For example:

(14)o,.x1 Yy
1 2 3 4
2 4 6 8
3 B 9 12
y 8 12 16

(2 2p1l4)e.+10 20

11 |21
12 |22
13 |23
14 |24

In general, outer product is regarded as each component of the first
operand applied to every component of the second operand. The result R
of the outer product 4. .fB is defined as

Type of Operands Definition

Vector R[{LJ]|=A[l]/B[J]

Vector and matrix R[LJ,K]|=A[I]fB[J;K]

Matrix and vector R[LJ;K]|=A[L;J]fB[K]

Matrix and matrix RILJLK L|=A[6LJ]fB[K;L]
where

(pR)=(pA),pB
(ppR)=(ppA)+ppB

Transposition

The notion of interchanging the rows and columns in a matrix is a funda-
mental concept in mathematics and is useful in many data analysis pro-
grams. For example, a program designed to group data by row for
analysis, that is,

Subject
A B C
1 X X X
Variable s X X X
3 X X X
4 X X X

5.4 FUNCTIONS ON ARRAYS 141

would be useful for grouping the data by subject. All that is needed is a
means of transposing the data matrix.

The row-column transposition of a matrix in A W
produces a matrix whose rows are the columns of M and whose columns
are the rows of M. For example:

M€3 upr12
M

1 2 3 4y

5 6 7 8

9 (10 11 12
M

1 5 9

2 65 10

3 7 11

4 8 12

The monadic operator symbol is the circle symbol overstruck with the
reverse solidus. More generally, the monadic transpose operation is the
interchange of the last two coordinates of the operand.

N+«2 3 Y4p124

N
1 2 3 4y
5 6 7 8
9 |10 11 12
13 j14 15 18
18 19 20
21 |22 23 24
NTRANS+QN
NTRANS
1 5 9
2 6 10
3 7 11
4 8 12
13 (17 21
14 |18 22
15 |19 23

16 |20 24

oN

2 3 |u
pNTRANS
2 4 |3

142 ARRAYS AND OPERATIONS ON ARRAYS

The problem of augmenting a matrix 4 with a matrix B, depicted as:

A

|
|

B > A { B
!

is easily solved with the ravel, catenation, and transpose functions.

oo

1.y

oo

(5)]

A+<3 4p112

B«3 2p0
C+«®(((pA)+pB)[2],(pAY[11)p(,RA), 8P
A

2 3 4
6 7 8
10 11 12
B
c
2 4 0 0

The dyadic form of transposition uses a left operand which specifies the
coordinates that should be interchanged. For example:

A I QY

FWwWwNoPRE

[G Y

<3 4p112
2 18yM

5 9
6 10
7 11
8 12

(aM)=2 13M

o

Given the dyadic transportation operation NQM, then pN must equal
ppM and the N [I]th coordinate of the result is the /th coordinate of M.
Therefore, the components of N must specify all the coordinates of the ar-
ray result. If (pM)=3,thenl 2 30orl1 1 20r1 2 1lor3 1 2wouldbe
a suitable value for N whereas 1 1 3 would be illegal. That is:

5.4 FUNCTIONS ON ARRAYS 143

[So i ol

13
17
21

£ wN P

[eo R B o2 B)

11
12

Me2 3 4pr24
Ne3d 1 2

1y
18
22

oM

15
19
23

QeNaM

13
1y
15

16

17
18
19
20

21
22
23
24

16
20
2y

The result R of dyadic transposition on M is defined as follows:

Operation

QM
28 M
QM
| §M
28M
I QM
29M
IQM
29M
| QM
2QM
3Qﬁf
1 QM
QM
29M
1 QM

B ==) N o= = = W NN BN e e N e

W W NN N NN — e -

>
W W W Lo Lo o o W W e W L N NN E&

ppR

W o Lo N W NN W W NN = NN e

Result
R{I|=M[LI]
R[LJ]|=M[LJ]
RILJI=M[J;1]
RIIl=M[LLI]
R{LJ)\=M[LLJ]
R{LJ]=M[IJ;]]
R[LJ]=M[LJ;J]
R{LJ:K)|=M[I,J;K|]
R[LJ,K|=M[IK,J]
R[LJ]|=M|J;I,1]
R[LLJ|=M[J;I,J]
R{LJ;K)=M[J,1,K]
R{LJ]|=M[J;J;1]
R[ILJK|=M[J,K;I]
RILJ;K|=M|K;I,J]
R[LJ;K|=MI[K;J;I]

Notes

Main diagonal of M

No transposition specified
Same as M

Main diagonal of M

No transposition specified
Same as QM

144 ARRAYS AND OPERATIONS ON ARRAYS

The following values for N where ppM =3 are illegal: 1 1 3, 1
133,222,223,232,233311,313,322 3233

- -

- ~ 1" -
33 2,and3 3 3.

31,
31

L]

Reversal and Rotation

In examples requiring a descending sequence of integers, the following
expressions was written:

N«?
(N+1)-¥
7 6 |5 4 3 2 1

which is simply the reversal of «N. The idea of reversing the components

of an array is a cumbersome task in programming, and a function to do

the job prevents many problems therein. The circle symbol overstruck
by the vertical stroke is the operator for the monadic reversal operation
which appears as follows: 4) A. If A is a vector, then the components are
reversed. If A is an array, then¢A indicates a reversal along the last
coordinate. If reversal is desired around the /th coordinate, then the co-
ordinate index must be specified as follows: d)[I]A. ¢[1]A may be indi-
cated by: ©A4, where the operator is the circle symbol overstruck with a
minus sign.

A+16
$A
6 5 4 3 2 1
B+2 3p16
B
1 2 3
4 9§ 6
lor 135
4 § 6
1 2 3
[218
3 2 1
6 5 &
($[21B)=0B
111
11 1

5.4 FUNCTIONS ON ARRAYS 145

c
1 2 3 4
5 6 7 8
9 {10 11 12

13 |14 15 16
17 |18 19 20
21 |22 23 24

¢L1]1C

13 |14 15 16
17 |18 19 20
21 |22 23 24
2 3 4
6 7 8
9 |10 11 12

[T

A+3 3p'TEAFORTWO®
A

TEA
FOR
WO

$L[13A
TWO

FOR
TEA

Reversal does not change the structure of the operand so the result as-
sumes its dimension and rank.

The dyadic form of the (t) operator is used to rotate an array cyclically.
The operation is of the form:

Vector Rotation Array Rotation
Kb A k()4

If A is a vector, then K must be a scalar and A4 is rotated to the left
(pA)| K components. Thus, if K is positive, rotation is to the left,
whereas if K is negative, rotation is to the right. For example:

A+16
244
3 4|5 6 1 2
“3dA
4 5 j6 i 2 3
(4dAa)="2644
1 1 |1 1 1 1

146 ARRAYS AND OPERATIONS ON ARRAYS

If A is an array of higher dimension, then the coordinate along which the
rotation is to take place must be specified as a coordinate index. If it is
omitted, the last is assumed. The first coordinate may be specified as
K© A where © is a circle overstruck with the minus sign. The dimension
of K must agree with the respective dimension of 4; if K is a scalar, then it
is extended to all indices of 4. The sign and magnitude of each com-
ponent of K determines the rotation that is applied to the respective
dimension of 4 and a positive K indicates rotation toward the index
origin. For example:

A+3 Hpr112
A
1 2 3 y
5 o 7 8
9 10 11 12
240214
3 y 1 2

(T1d4)="1¢6[214

11 11
11 41
11 11
160134
5 6 7 8
9 [to 11 12
1 2 3 M
1 0 204
2 3 u 1

5.4 FUNCTIONS ON ARRAYS

(SN

[Ty

[y

o,

13
17
21

13
17
21

W

[N

[Ny

15
19
23

B
2 3
6 7

10 11

14 15

18 19

22 23

1¢[2]B
6 7

10 11
2 3

18 19

22 23

14 15

3¢p[13B

iy 15

Hg 19

P2 23
2 3
6 7

10 11

1| 1

1| 1

i 1

1 1

14 1

1t 1
2¢[31B
y 1
8 5
12 9
16 13
20 17
24 21

B+2 3 up124

16
20
2y

20
24
16

16
20
24

y
8
12

(3¢[11B)=1¢[1]B

147

As with reversal, the dimension and rank of the result are taken from the
dimension and rank of the right operand since the structure is not changed

by rotation.

148 ARRAYS AND OPERATIONS ON ARRAYS

Compression and Expansion

The compression operation provides a means of suppressing some com-
ponents of an array while retaining others. The general form of compres-
sion is;

U/ A

where U is a logical vector that is conformable with A, the array being
compressed. In vector compression, components corresponding to a 1 are
retained while those corresponding to a O are suppressed. If either
operand is a scalar or a one-component array, it is extended to apply to all
components of the other operand. The result of vector compression is
always a vector. For example:

U«1 01 0
V+*ABCD!®
vrv

AC
U/dbry

y 2
Uss

5 5
1/14

1 2 3 4

In matrix compression, it is necessary to specify along which coordinate
the compression should operate. Similar to reduction, U/[I]M and
U+ M denote the first coordinate and U/[2]M and U/M specify the
last coordinate. More specifically, U+ M denotes compression along the
first coordinate and suppresses rows while U/ M operates along the second

coordinate and suppresses columns. For example:

5.4 FUNCTIONS ON ARRAYS 149

M+3 Upr12

(&4}

[y
N
W
F

110 1/¥M
1 2 4
5 6 8
9 |10 12

N+3 UY4p'TAEAFBORTCWO"

N
TAEA
FBOR
TCHO
P+1 0 1 1/N
P
TEA
FOR
TWO
o1 1/[1]P
POR
TWO

In compression of rank-3 arrays, compression operates along a co-
ordinate and entire matrices are suppressed. For example:

150 ARRAYS AND OPERATIONS ON ARRAYS

@+2 3 3pi118
@
1 2 3
L 5 6
7 8 9
10 11 12
13 |14 15
i6 |17 18
1 0/[11q
1 2] 3
4 5 b
7 81 9
o0 1 1/[2]Q
y 5 6
7 8 9
13 A4 15
16 17 18
1 0 1/@
1 3
Y 6
7 9
10 12
13 5
16 [18

In general, the rank of the result of compression is always equal to the
rank of the right operand, including scalars and one-component arrays
after they have been extended.

Expansion is the converse of compression and is written as follows:

U\ 4

where U is a logical vector. U\ A expands A4 to the form given by U,
so that (pA4) =+ /U, by inserting padding for components that correspond
to zero components of U. Numeric arrays are padded with zeros and
character arrays are padded with space characters. With arrays of rank 2
or greater, U X A4 denotes the first coordinate and U\ A specifies the last.
Since the operation is closely related to compression, it is further de-
scribed by example:

5.4 FUNCTIONS ON ARRAYS 151

V+'TEAFORTWO!
(12p1 1 1 0)\V
TEA FPGR TWO
+9p1 0
+«U/19
+(~U)/19
1 3 7 9
2 4 g
UNY)+(~U)\Z
1 2 4 5 5 7 8 9
+2 4p18
1 0 1\[1IM
1 2| 3 4
0 o] 0 0O
5 6 7 8
1 0 1 1 1\M
1 o 2 3 &4
5 0 6 7 8
P+2 2 2p1 8
1 1 o\[2]Q
1 2
3y
0 0]
5 6
7 8
0 0
1 o0 1\[1]Q
1 2
3 4
0 0
0 0
5 b
7 8

The conformability requirement for U \[/]4 is that (+ /U)=(pA)[1].

by Y P B o YR, TL. C.l_. od 2 PR i SR J LI Gy, de
TURE WU T1Op— 1HE gtied 1*) U FTUmingyg CoOnipoimreing

To a limited extent, the capability of selecting the leading or trailing
components of a vector is provided with prefix and suffix vectors and the

152 ARRAYS AND OPERATIONS ON ARRAYS

compression operation. A prefix vector of order n is a logical vector con-
taining n leading ones; the remaining components are zero. Similarly, a
suffix vector of order n contains n trailing ones. Thus, compound ex-
pressions to take or drop components of a vector are given as follows:

X+*7 3 96 514 3
U+«(3p1),((pX)-3)p0
U

1 111 o o o o o
Uusx

7 3| 9

(~U)/x

6 5 |1 4 3

V+{(((pX)-3)p0),3p1
14

o o0 o 0 1 1 1

The take and drop functions in APL eliminate the need for compound

expressions of this sort and apply to rank-»n arrays as well. The general
form of the take operation is:

T+4

where T must be an integer or vector of integers. T must contain one
component for each coordinate of 4. If 4 is a vector, then T may be a
scalar or a one-component array. The rank of the result is always the
rank of the left operand. If 4 is a vector and T is positive, then T+ 4
selects the first T components of 4. If T is negative, then the last T
components are selected. If T=0, then the result is the null vector. If

T>pA, then the right operand is padded with zeros or blanks, as required.
For example:

b+'7 3965143
3+V

7 3|49

C5+V

6 5 1 4 3

ppOt+V

W+ IRREGARDLESS?!
"64(84W)
REGARD

5.4 FUNCTIONS ON ARRAYS 153

If A is an array, then pT must equal ppA4 and T [/] determines the com-
ponents selected along the /th coordinate of 4. The components of T may
be positive or negative and indicate first or last components, respectively.
For example:

M+3 4p112
M
1 2 3 4
5 6 7 8
9 10 11 12
N+1 3
N+M
1 22 3
2 2+M
5 6
9 [10
p3 0tM

A+2 3 Up124

w
(=}
~J
w

13 |14 15 16
17 |18 19 20
21 |22 23 24

1 3 u4+4
13 14 15 16

17 18 19 20
21 |22 23 24

2 2 244
3 4
7 8
15 [16
19 120
Th d eration is deﬁned anala gously but d[g s the indicated com-

L1 Vo Upielaectrme 1o LR 2LILRA 43la < Ly Y=

TiA4

154

If the right operand is a vector, then (p4)4 A gives an empty vector.

ARRAYS AND OPERATIONS ON ARRAYS

If

T>pA, then the operation yields an empty array, which assumes the rank

Y ke ol
I.

Ol

k+'7 3965143
3+ V¥
6 5 [t 4 3
_ 54V
7 9
pp(pV)+V
1
g+'/*COMMENT*/'
2+(24C)
COMME
«3 4p112
i 2 3 i
5 6 7 8
9 o 11 12
+«1 3
+M
8
12
2 2+M
3 oy
p3 0+M
0 4§
A+2 3 Hp124
A
1 2 3 y
5 6 7 8
9 10 11 12
13 |14 15 16
17 18 19 20
21 |22 23 24
T1 0 0+4
1 2 3 4
5 6 7 8
9 o 11 12
0 "1 2+4
3 Y
7 8
15 H6
19 (|20

5.4 FUNCTIONS ON ARRAYS 155

Set Operations—Index of and Membership

One of the functions that depends upon the index origin is that which
gives the index of the earliest occurrence of a scalar value C in a vector V.
If 1-origin indexing is used, then the indices of components in ¥ run from
I through p V. If 0-origin indexing is used, then the indices of the com-
ponents in ¥ run from 0 through (p ¥)—1. The index of operation is
written:

Vil

and gives the index of the earlier occurrence of scalar C in vector V. If the
right operand is a vector, then the result is a vector of the same size—the
components of the result are the indices of the right operand in V. The
left operand must be a vector. This concept is extended to rank-n arrays
so that for the result R of the operation Vi4:

(pR)=pA
(ppR)=ppA

If U component of 4 is not found in V, then it is given the index 1+ /tpV.
For example:

V<7 3 9 6 51 4 3
V13

Fi15

6 9 |2 7 5

A+ ' ARCDEFGHIJKEMNOPQRSTUVWXYZ!
Av*TEA FOR TWO'

20 5|1 27 & 15 18 27 20 23 15
WeV,10 11

.m LasA4n
wid +pild

6 |11 2 7
5 b 11 11
3 ¢ 10 11

(pW}t12

¥

7 3] 9 6 5 1 y 3 10 11
M+«2 3p16

WM

65 |11 2
7 5 b

JORIGIN ©
V13

Vi15
8 5 8 1 6

JORIGIN 1

156 ARRAYS AND OPERATIONS ON ARRAYS

The membership function yields a logical value (i.e., 0 or 1) if a given
component (or scalar quantity) is an element of a specified array. The

function, written 4 €8, gives a result that is the same size as 4. If a
component of 4 is contained in B, then the respective component of the
result is 1; otherwise, it is given the value 0. B can be a scalar, vector,

matrix, or rank-» array.

C+'ABCDEFGHIJKLMNOPQRSTUVWXYZ?
D+'TEA FOR TWO!

Del

1 1. 4 ¢ 1 1 1 0 1 1 1
E+(DeC)/D
1

TEAFORTWO
el

1 1. 1 1 1 1 1 1
(3 4p112)er16

11 1)1

1100

0 0 0O

 (51125)€0)/125

5 10 | 15 20 25

(2 4 6 8 10 12 14 16)e3 4p112
1 1 B 1 1 1 0 o0

Grade Up and Down— Sequencing of Components

The need to sort a trivial list of values occurs frequently in computer
applications—yet it is one of the more cumbersome and time-consuming
operations. The grade up function uses the monadic operator 4 (formed
by overstriking a delta A with a vertical stroke) and yields a vector of
indices that would order the vector right operand in ascending sequence.
The general form of grade up is:

R=AV

where the result R is the same size as V. For example:

V<7 396514 3
AV

1 6 |2 8 7 5 u 3
viAv]

7 1|3 3 4 5 & 9

5.4 FUNCTIONS ON ARRAYS 157

In the above example, the index of the smallest component ~7 is 1, the
index of the next highest component 1 is 6, etc. The ordering of duplicate
components is determined by their position in V.,

The grade down function:

R=YV

is analogous to the grade up function except the ordering is given in de-
scending sequence, and the operator is formed from a del (v) and a verti-
cal stroke. For example:

b+'7 396 5143
v

3 4 |5 7 2 8 6 1
4R AR _

9 6 5 ¥ 3 3 1 7
W+3 yplV,8 0 2 7

M

7 3 9 6
5 1 ¥ 3
8 0o 2 7

3 4p(,M)[4,M]

7 o 1 2
3 3 ¥ 5
6 71 8 9

The operand for grade up and grade down is limited to vectors, and the
size of the result is the size of the operand. The indices in the vector are
affected by the index origin,

Deal— Generation of Numbers at Random without Replacement

The roll function, discussed previously, generates numbers pseudo-
randomly from a given set with replacement. Therefore, the probability
of drawing a unique component from the given set by this process exists
only within probabilistic limits. The deal function, A?B, where A and B
are integer scalars or one-component arrays, generates a vector of 4 com-
ponents from the vector «B without replacement. Thus, each component
generated is unique. The result is dependent upon the index origin.

3?5
5 1 12
7?7
4y 5 | 2 1 3 7

158 ARRAYS AND OPERATIONS ON ARRAYS

Decode and Encode—Base Value and Representation
The ordinary polynomial of the form:

ax"+a, , x" 7 ..axttax+a

arises in a variety of ways in computing, the most frequent being with re-
gard to the positional number system—or a fixed-base value representa-
tion. Given a vector whose components represent coefficients of descend-
ing powers of a base value, then the base ten value of the polynomial is
usually computed using nested multiplication or a component-by-com-
ponent vector multiplication and a sum reduction. In the latter case, it is
first necessary to develop a weighting vector of successive powers of the
base value. For example, the coefficient vector 4« 1 2 3 4 to the base
ten is computed as follows:

Avr
X+1000 100 10 1
+/AxX

1234

Similarly, B« 1 0 1 to the base two and C«+ | 0 0 to the base eight are
computed as:

B+«1 0 1
Yey 2 1
+/BrY

C«1 0 O
2«64 8 1
+/Cx2

6L

Actually, the operation is more general and applies to: the hours, min-
utes, and seconds in a day; the gallons, quarts, pints, and ounces in a
barrel; the yards, feet, and inches in a mile, etc. That is, the radix vector
need not be successive powers of a given base value. For example, the
seconds in 3 hours, 4 minutes, and 17 seconds is computed as follows:

A+3 4 17
B+3600 60 1
S«+ /AxB

Ny

11057

5.4 FUNCTIONS ON ARRAYS 159

Yet in this example, the most natural way of representing the days, hours,
and minutes is:

24 hours per day,
60 minutes per hour, and
60 seconds per minute.

which is termed a radix vector. The base value function allows the radix
vector to be expressed in natural order and delegates the intermediate
calculations to the computer. Base value is often called the decode func-
tion and is expressed as:

BlA

where B represents the radix and 4 is the vector of coefficients. If Bis a
scalar, then it is extended to all components of A. If B is a vector, then it
must be the same size as 4. Thus:

A+ 4

101A
1234

211 0 1
5

24y 60 60L3 4 17
11057

The function utilizes a weighting vector, internally, which is developed as
follows:

xrr

WipWi=1
WiI-11=B[Ilx W|[I]

Here, B is the radix vector. The result R of the base value function is
defined as:

R=+/AxW
or as:
R=A+.xW

The representation function, also called encode, provides the inverse of
decode. The function is expressed as:

BTS

where B is the radix vector and S is a scalar value. The dimension of the
result is the size of B. For example:

160 ARRAYS AND OPERATIONS ON ARRAYS

10 10 10 10T1234%
1 2 (3 4

2 2 275
1 0 |1

2 2715
0 1

R [1]is not used in either function and the components of the radix or co-
efficient vectors are not restricted to integral or positive values. For
example:

109 3 .511 2 3
5.5

3 73 "311 2 3
6

3 T3 7376
1 1 |o

0 "3 "aTs
1 1 |o

Summary of Functions on Arrays

A brief summary of the functions designed for use on arrays is included
here for reference and review:

1. Reduction. Reduction is applied along the /th coordinate of 4 with
the operation:

@/{I4

If [1] is elided, the last coordinate is used. Alternately, the first
coordinate may be specified with:

Ry
2. Inner product. The inner product of arrays 4 and B is specified as:
AfgB

where fand g are scalar operations or mathematical functions. The
ordinary matrix product is specified as:

A+.xB
3. QOuter product. The outer product of two arrays is specified as:
Ao fB

where the given scalar operation or function fis applied to each

component of one array by all components of the other; f may not
be a defined function.

5.4 FUNCTIONS ON ARRAYS 161

4. Transposition. The row-column transpose of a matrix is specified
as the monadic operation:
oM

and is extended to rank-n arrays by exchanging the last two co-
ordinates. The dyadic form of transposition permits the user to
specify the coordinates that are interchanged and has the form:

NOM

where pN = (ppM).

5. Reversal. The reversal of components along the I/th coordinate
of A is specified by:

$11)4

If [I] is elided, the last coordinate is used. Alternately, the first
coordinate is specified by:

©4

6. Rotation. The rotation of components along the I/th coordinate of
A is specified by:

K114

If K is a scalar, it is extended to all indices of 4. If K is a vector, its
size must agree with the respective dimension of A. If [/] is elided,
the last coordinate is assumed. The first coordinate is specified by:

Ko 4
AR v 48

If K is positive, rotation is towards the lowest index for the specified
coordinate. If K is negative, it is towards the high-numbered index
for that coordinate.

7. Compression. Compression along the /th coordinate is specified by:
UjiiiA

where U is a logical vector where pU=(pA)[I]. If [I] is elided,
the last coordinate is assumed. The first coordinate is specified as:

U+ 4
8. Expansion. Expansion along the I/th coordinate of 4 is specified by:
U\[I]A
where U is a logical vector and (+/U)=(pA4)[I]). If [I] is

162

10.

12.

13.

14.

15.

ARRAYS AND OPERATIONS ON ARRAYS

elided, the last coordinate is assumed and the first coordinate is
specified by:

LY

UxA

. Take. The take function:

THA4

selects the first T[/] components (if T[] is positive) along the
Ith coordinate of 4. If T[I] is negative, the last components are
selected. If 4 is a vector, the T must be a scalar or one-component
array.

Drop. The drop function:
TV A4

deletes the first 7[/] (or last) component of A4 along the Ith co-
ordinate depending upon whether 7' []] is positive (or negative). If
A is a vector, then T must be a scalar or a one-component array.

Index of. The earliest occurrence of A (or components of 4) in vec-
tor Vis specified by:

ViA

The result is the same size as 4.

Membership. The membership function yields the value 1 if 4 (or
component of 4)is an element of vector B; that is,

AeB
e ve | . atl £~ .t - 1 1 a1l 1 FaY [ol W . M . al
Otherwise, the function yields the vaiue 0. The resuit is the same
size as A.

Grade up. The grade up function

AV

yields the permutation of indices (of V') that would order ¥, so that
the components of ¥ [A V] are in ascending sequence.

Grade down. The grade down function

24

yields the permutation of indices (of ¥') that would order V so that
the components of ¥ [} V] are in descending sequence.

Deal. The function,
A?B

16.

17.

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS 163

generates a vector of size p4 from tB pseudo-randomly without
replacement. The result is dependent upon the index origin.

Decode. Decode yields the base ten value of coefficients 4 to the

radix R:

R1A

If R is a scalar it is extended to all components of 4; the dimension
of the result is the dimension of 4.

Encode. Encode yields the vector of coefficients A of the radix R
that is equivalent to the scalar S:

RTS

The dimension of the result is the dimension of R.

Creating a numeric vector.
Dimension of V,

Generating a vector with the reshape function.

Numeric vector printed with intervening spaces.
Catenation of two vectors.

Element-by-element operation on vectors of the
same size.

Right operand extended to all components of V.,

Compound expression giving a logical result.

Vector of characters
Size of C—each character is a component.

Indexing and specification.

Character vector printed without spaces.
Mixed output requires semicolon.

Indexing of an expression.

Subscripted subscript.

Index vector of integers 1 through 6.

Prints as blank line.
Size of null vector.

Rank of null vector.

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS
V«~7 3 96 5
pV
5
W+«5p2 3 1
W
2 3 |1 2 3
V.W
"7 39 6 5 2 3 1 2 3
V=W
14 94 9 12 15
Va2
49 9| 81 3as 25
(VxV)=V»2
1 1 {1 1 1
C+«'TREA FOR TWO'
pC
11
Clulec[B8]+"]!
C
TEA|FQR| TNO
*TEN FACTORIAL IS '; '10
TEN FACTORTIAL IS 3628800
(vW)[23]
9
I+2
VL(2xW[T])-23]
9
16
1 2 |3 4 5 6
10 Null vector.
|3
p10
0
pp10
1

9(1997)y80(12)

1000

1—it is a one-dimensional array.
Size of a partial result.

164

ARRAYS AND OPERATIONS ON ARRAYS

(=N

[=

XeV,1 4 3

X[2 4 6 8]

1 3

+/14

/v

L/v

Vil sV

+/10

x /10

AJC='TEA FOR TWO'

/+2 2p1 0 O
U

M<+2 2p1 4

Catenation of vectors
Vector as an index.

Sum reduction

Largest value in ¥—maximum reduction,
Smallest value in ¥—minimum reduction,
Index of the largest value in V

Identity element for sum reduction.
Identity element for product reduction.
And reduction—test for equality

No! they are not the same.

Generation of a 2 x 2 logical matrix

Display of matrix.

Output is indented

Generation of a matrix using reshape and an index vector.

Element-by-element operation on two arrays,

Scalar operand extends to all components of M.

Monadic operation on array—applies to all components.

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS 165

[, =Y

13
17
21

[&4]

13
17
21

13
19

A+«2 3 4p124
A

4

8
12
16

20
24

N o F

20
24

=
NOOF

[

2 3
B 7
10 11
iy 15
18 19
22 23
pA
4
ppd
J+5
pd
ppd
AL231:4]+0
A
2 3
6 7
10 11
14 15
18 19
22 23
4 BpA
2 3
8 g
14 15
20 21
R<«2 3p16
B
3
B
,B
3 4 5
p5
(]

N = =
W~ =

N
FoR0OM

Generation of a rank-3 array.

Displayed as two planes since the first coordinate has
two dimensions.

Size of A.

Rank of 4.
3—we knew it all the time.

Size of a scalar.
Prints as a blank line.

Rank of a scalar is zero.
Subscripts separated by semicolons—specification of a
component of an array.

Note the zero component.

Restructuring—A taken in index order

B is raveled in index order
Size of a scalar value.

Ravel always produces a vector result

166

ARRAYS AND OPERATIONS ON ARRAYS

0o

[T- 2 E U

[y
»n

WAS 0

M+«3 U4p112

M[2;]

7 8

ML ;41«19 20 21
M

19
20

21

oON
= 3 W

V415
vEz2]

12

ViipV]
3 4 5
YORIGIN O

vi2]

12

VLipV]
3 4 S

M+3 2p16
M

+ /M
9
+/+/M

x/[1IM
20
YORICIN 1

Vector subscripts select rows and columns

Cross section of an array—all components corresponding to
elided index are selected.

Respecification of an entire column.

Index vector in 1-origin indexing
Second component in l-origin indexing.

Index vector in 1-origin indexing.
Index vector and vector indices agree
Change indexing origin to zero

Index of 2 selects third component
Components of the vector remain the same
Index vector in 0-origin indexing

Index vector and vector indices still agree

Generation of a matrix in 0-origin indexing

Reduction along the last coordinate

Reduction along the first coordinate

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS 167

A+2 3 L4p1 24
A
1 2 3 4
5 6 7 8
9 |10 11 12
13 14 15 16
17 |18 19 20
21 |22 23 24
t+/0214 Reduction of a rank-3 array along the second coordinate.
15 (18 21 24
51 {54 57 60
A+2 3p16 Generation of matrices 4 and B such that the last coordinate
A of A agrees with the first coordinate of 8.
1 2 3
4 5 6
B+3 4pdhr12
B
12 11 10 9
8 7 6 5
y 3 2 1
A+.xB Ordinary matrix product (generalized inner product).
40 34 28 22
112 97 82 67
AL.TB Inner product using L and T.
y 3 3 3
6 6 6 5
A+ .x3p 2 Inner product of matrix and vector
12 30
1 (3p2)+.x13 Inner product of two veclors.

168 ARRAYS AND OPERATIONS ON ARRAYS

Vo,+Ve13 Outer product of two vectors,
2 3 u
3 4 5
4 5 &
(f+2 3p16
M
1 21 3
4 5 B
i) Monadic transpose—interchanges last two coordinates.
1 4
2 5
3 6
<2 2 3p112
ul
1 2 3
4 5 6
7 8 9
10 p1 12
3 1 284 Dyadic transpose-- left operand denotes coordinates to be
interchanged.
1 7
2 8
3 9
4 po
5 p1
6 p2
1 1eM Main diagonal of M
5
4" 16 Reversal of index vector.
5 3 2 1
'OWT ROF AET! Reversal of character vector,
ITEA FOR TWO
(2] Reversal along the second coordinate.
3 21 1
6 5 u
pL1lM Reversal along the first coordinate.
4 5 6
1 21 3
M Reversal along the last coordinate
3 23 1
6 5] u

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS 169

[= L3N]

()

jud' TWO TEA FOR!

1 FOR TWO

" 3d1 7
7 1 2 3 4

1 2¢[21M

3 1
i 5

0 1 2¢[1]1M

3
6

1¢[1]M

6
3

1¢L2]M

1
y

neL2]4

(2}
w o

/<1 0 0 1
V+'ABCD!
/v

J/dvu
1/14

<
U /4

Vector rotation to the left.

Vector rotation to the right.

Rotation along second coordinate applying different rota-
tion to each row.
(rotation of rows)

Rotation along first coordinate (rotation of columns)

Left operand extended to all coordinates.

Compression,

Left operand extended

Right operand extended.

170

ARRAYS AND OPERATIONS ON ARRAYS

[0

o O =

(=1 2

W0 U =

N N

N+3 u4pr12
N2«U/[2]N
N2

u
8
12

N1
2 3 4
10 11 12
Ux[21n2
0 0 4
0 0 8
0 0 12

AUV
U\NA

B+«lU/ 4
C«(~U)/ 14
(U\NB)+(~U)\C
3 4

Ver7

L 4

3

24V

Ni+«1 o0 1/011¥

Compression along second coordinate

Entire columns suppressed

Compression along first coordinate

Entire rows suppressed.

Expansion along second coordinate
(converse of compression)
Padded with zeros

Character arrays padded with spaces

Reforming a numeric vector.

Take leading components of a vector
Take trailing components of a vector
Drop leading components of a vector,

Drop trailing components of a vector

Recall &,

Take 2 rows and 3 columns

Drop | row (trailing) and 2 columns

5.5 ANNOTATED SCRIPT OF ARRAY OPERATIONS 171

A+'ABCD!
B+ T C‘-i
A B Index of Bin A4,
A\ 'BDK! Extended to vector right operands
5
V+<10 13 6 4 1 5 3
ARE] Components not in ¥ are given index of (p V')+1
7 4% B
+«16
13 4p112 Applies to array right operands, as well.
2 3 & Components not in W are given index of (p W)+1.
6 7 7
7N 7 7
E+(0=2[1100)/1100 Vector of even numbers < 100
(16)ekE Membership function
o 1 0 1 Result-- logical vector
(3 4pr12)ek Left operand matrix.
o 1
o 1 Result -logical matrix
0l 1
V<« 7 3 96 51 4 3 Respecification of V.
4 Grade up—sequence of indices that would order V in
2 8 7 5 4 3 ascending sequence
viav]
3 3 & 5 B 9
v Grade down—sequence of indices that would order V in
5 7 2 8 & 1 descending sequence.
7710 Generation of random numbers without replacement
5 4 8 6 2
10L1 2 3 4 Base value of vector

by . 4 o~ s
<Ll U 1L

2 2 275 Representation of decimal value

6 TOPICS IN
PROGRAMMING

6.1 THE REALM OF AUTOMATIC COMPUTATION

The facilities presented thus far in APL make it effective as a general-
purpose desk calculator—a very powerful one, indeed, but nevertheless, a
desk calculator. What, then, is the difference between a collection of basic
operations and conventions, such as the ones that have been presented,
and a more general automatic programming system? The answer is al-
most obvious. First, it i1s necessary to subordinate some of the detail
usually involved with programming to the programming system itself.
APL achieves this resuit through arrays and a wide range of array oper-
ations, which were presented in the preceding chapter. Next, the system
must contain facilities for operating in the automatic mode; that is, it
must contain features so that sequences of statements can be stored in-
ternally and be fetched automatically instead of making it necessary for
the user to enter each statement just before it is executed. Defined func-
tions serve this need. Many algorithms are more than mere sequences of
statements. Repetition, iteration, or looping is required. Through a
branching operation and statement labels, a variety of sequence and con-
trof features are available for execution within defined functions. Input/
output is always signiﬁcant and is often emphasized because of the human

fortm " i Alvad with nAd vt A DI
1aCtors prooiems INvoivead wilin progrduluuua anda umus a COmpuicr. Aro

allows character and numeric data to be entered in a variety of forms and
to be displayed, as required. Automatic computation is not without its

172

6.2 DEFINED FUNCTIONS 173

disadvantages, and the elimination of syntactic* and logical errors from a
program, called debugging, is at best a chore. APL includes a trace func-

tion and a stop conirol funciion to aid in the debugging process.

Four new topics have been mentioned: functions, sequence and control,
input/output, and program checkout. For the most part, these topics
constitute the difference between automatic computing and the desk
calculator mode of operation. Obviously, the toptics are nontrivial and
each is worthy of considerable attention. On the other side of the coin,
however, there is much that is usually said about these topics that does not
need to be said—that is, either the information can be inferred from
fundamental concepts or it results from having to describe a well-known
or intuitive process in terms of elementary operations. The vehicle used
here for describing these topics in computing is the facilities available in
the APL language. The reader benefits in three ways: (1) He is exposed to
the topics, as intended; (2) he is exposed to the more powerful features

of APL; and (3) the use of APL to introduce the topics is straightforward
and economical of time and energy.

6.2 DEFINED FUNCTIONS

The right triangle problem of Section 4.4 exhibited what was loosely de-
fined as a program. For review, the program uses the base and height of
a right triangle and computes its diagonal, perimeter, and area. Suppose
that one needed to run this program for various values of the base and
height. Not only would it be uneconomical and tedious to enter the state-
ment repeatedly, but the mechanics of the process would probably gener-
ate many errors and the user would finally end up finding a shorter

mathnd Aar oive 111 and An the falrnlatiane hy hand In chart it wanld
meuiod Or give Up alll g e CaiCuiauiOrns oY ndnd. il sinorf, It woudid

be desirable to store the statements and then execute them for different
values of the base B and height H. APL satisfies this need with a facility
for defining and invoking functions.

A precise definition of a function is of particular interest, even though
most readers have a working knowledge of the concept. Mathematically,
a function 1s a mapping between two sets 4 and B and is expressed in a
variety of ways:

aeA -f-*beB
f:A >B
f(a)=> b
fa—>b

*The dual role of most operators and the right-to-left rule sometimes result in an execut-
able statement (ie . one that does not cause an error message) that does not serve the
intended purpose Often, this type of error is more difficult to isolate than a logical error.
For lack of a more appropriate classification, the name syntactic error is used.

174 TOPICS IN PROGRAMMING

The set A is called the domain of the function and B is called its range.
Elements in the domain or range of a function need not be limited to
nerla vyalivac ta catich Laakhaua Aafin Daw avoems ernalor odd:
Dlllslc VGIUCD (49 aaualy lllC auuvc ucuuluuu 1 Ul Cl\alllplc, swalal auuuluu
is a function of two values and gives a single value as a result. Thus, there
are monadic and dyadic functions—which is no surprise. The precise
method of designating a function also deserves some discussion. Given a
function (f) and operands A and B, it can be applied to the operands in

the following ways:

Monadic Form Dyadic Form
f(B) f(4,B)
fB fAB
AfB

The latter form for both cases closely resembles ordinary mathematics
and was selected for use in APL. The quﬁStiOi’i of more than two argu-

ments (or operands) naturally arises and is resoilved by making one or
both or the arguments vectors, matrices, or rank-n arrays as the case may

be.

The Definition Mode

Ordinarily, the APL system is in the execution mode so that it can respond
to requests for computation by the user. The definition mode is used for
defining functions and is entered by typing the character V, pronounced
*“del,” followed by a function header statement, which contains the name
and declaration of syntax of that function. The system leaves the defini-
tion mode when the next del is received, that is, if it is not contained in a

literal or a comment line.

After the function header is entered, APL responds with a number en-
closed in brackets as follows:

VRTRNGL
1]

Statements within functions are sequenced by a decimal number, and the
number of the next statement to be entered is given by the computer. The
user enters the statements, comprising the function, successively until the
function is complieted. The statements are not checked as they are
received by the computer and are stored in the active workspace under
the function name. A final del then completes the function. That is,

6.2 DEFINED FUNCTIONS 175

YRTRNGL
{11 D+«{(A*x2)+Bx2)% .5
t2] P+H+B+D
[3] A+, 5%BxH
(4] v

The function is ready for use as follows:

H+3
B+Y4
RTRNGL
D, P, A
5 12] 6
+5
«12
TRNGL
»P.A
13 3 30

It should be noted here that the above function is invoked by entering its
name and that it requires no arguments. However, RTRNGL does not
return an explicit resuit* so that its appearance in a mathematical expres-
sion results in an appropriate error message. For example:

2xRTRNGL
VALUE |ERROR
2xRTRNGL
A

Functions can be modified in a variety of ways. The most elementary
form of modification is given here; more complicated procedures are given
in a following paragraph. Since D, P, and A4 were printed after each
execution of RTRNGL in the preceding examples, it seems reasonable to
reopen the function definition and simply add the necessary statement. A
function is reopened by entering a del followed by the function name; the
system responds by the number of the next statement to be entered. That
is:

VRTRNGL
Y D,p,A
[

o

*Such as a square root routine might return, for example.

3

= lm)
()

176 TOPICS IN PROGRAMMING

Although the characteristics of the function remain the same (no argu-

ments, implicit result), it now contains embedded output statements. For

avarmla.
CAalllpiv.

H+3
B+u
RTRNGL
5 12| 6
+5
B+12
RTRNGL
13 34 30

After a few changes, it is usually desirable to obtain a listing of the
function to insure that future modifications are made from a known
foundation. This is achieved by using the quad* symbol [as follows:

VRTRNGLLO]V
v |RTRNGL
(1] D«((A%x2)+B*2)*0,5
[2] P«H+B+D
[3] A+«0.5xBxH
f4] pD,P,A

In addition, statements can be inserted, replaced, or deleted in conjunc-
tion with a display of the function. These facilities are covered under
Sfunction modification.

Syntax of Function Definition

The foregoing function definitions were composed of several components.
The statement following the initial del is the function header. The numbers
in brackets are called the statement numbers and the associated statements
are the body of the function. The function header essentially controls the
form of the function. Six possibilities exist which are grouped into two
classes depending on whether or not the function returns an explicit result.
The forms are summarized in Table 6.1. An explicit result function pro-
duces a result and may appear as a constituent of a compound expression,
much like the primitive operations and mathematical functions.

Of the six cases given in Table 6.1, four can be used with the right

*Sometimes called the window symbol

6.2 DEFINED FUNCTIONS 177

TABLE 6.1 DEFINED FUNCTIONS

Form of Function Header

Arguments Explicit Result No Explicit Result Type
0 VR<FCN VFCN Niladic
| VR<FCN Y VFCN Y Monadic
2 VR«X FCN Y VX FCN Y Dyadic

FCN =1 unction name
A.Y =Dummy arguments
R =Dummy result

triangle problem—that is, since two arguments, base and height, are
required. They are listed as follows:

|. Implicit argument—implicit result (this is the RTRNGL example
given).

3. Implicit argument—explicit result (three values are computed so
they must be returned as a vector of three components).

3. Explicit argument—implicit result.

4. Explicit argument—explicit result.

A function can have only one result, but it may be a scalar, vector, matrix,
or rank-n array. The implicit argument-explicit result form requires no
formal arguments but produces a result that may be used in a compound
expression. That is:

VR+<RTR1

(1] D«((H*2)+B%2)*.5
[2] P+H+B+D

(3] A+ 5xBxH

[u] R«<D P ,A

[5] v
H+3
B+y
T+«RTR1
T

5 12 6
HTR1+2

7 14 8

An explicit result function without arguments is analogous to a constant
in that it can be used anywhere that an operand can be used, except to the
left of a specification operation. The explicit argument-implicit result form
allows more flexibility in assigning arguments but again restricts the

178 TOPICS IN PROGRAMMING

function from being used as a constituent of a compound expression. For
example:

vX RTR2 Y
[1] De((X%2)+Y*x2)%x,5
[2] P+X+Y4+D
[3] A+, 5xXxY
u] D,P,A
v

[5]
3 RTR2 4
5 12|86
5 RTR2 12
13 30{ 30
(25%.5) RTR2 3xu
13 30 30
7+3 RTR2 U4
5 12| 6
VALUE |[ERROR
7«3 RTR2 4

A

The preceding example is the first in which formal arguments have been
used. Formal arguments, such as X and Y above, are used during function
definition as dummy variables. When the function is used, they must be
replaced with expressions that have a value. Every occurrence of a
dummy variable within a function is effectively replaced by the value that
the argument assumes at the point of activation. The use of a dummy
variable within a function definition does not affect its value outside the
function definition. That is:

VR<X PLUS Y
1] R+X+Y

[2] v
X+10
Y+20
1 PLUS 2
3
(17 PLUS "4)-1
12
¥, Y
10 20

The explicit argument-explicit result form requires one or more arguments
and returns a result that can be used in a mathematical expression. For
example:

6.2 DEFINED FUNCTIONS 179

[on EanEanNon lan]
NnEFwhR
e e e e

5 12

VR+«X RTR3 Y
De((X%2)4Y%2)x .5
A+, 5xXxY
R+D,P,A
v
T+«3 RTR3 4
T
&

(3 RTR3 u)=2

25 1ﬂ4 36

Careful attention should be given to the arguments and result of a defined
function. As with primitive operations and mathematical functions, they
may be any constituent that is acceptable to the body of the function.
Consider again the PLUS function given above.

1]
(2]

VR«X PLUS Y
R+«X+Y
v

Clearly, the values which replace dummy variables X and Y may be any-
thing acceptabie to the operator +.

3 4
6 6
2
6
10

2 PLUS 15

5 & 7

(15) PLUS $15

6 6 6

(3 3p19) PLUS %83 3p19

6 10
10 14
14 18

In other functions, the argument must be an operand of a specific type.
Consider a SORT function defined and used as follows:

VDONE+SORT LIST
DONE+LISTLALIST]

96 514 3
4 5 6 9
"7 3

180 TOPICS IN PROGRAMMING

However, since the grade up function requires a vector as an operand, the
function produces a length error if applied to a scalar value. That is

P,

(using the above function definition):

ORT 5
LENGTH| ERROR
SORTT1{) DONE«LIST[ALIST]
A

This could have been avoided by judicious use of the ravel operation
as follows:

YD«SORT L
(1] D«(,L)L4,L]
£21 v

SORT 7 3 9 6
7 3|6 9

SORT 5
5

Local and Global Variables

In APL, all variables are global unless specified otherwise. Essentially,
this means that a variable used inside and outside of a function refers to
the same data item. For example:

VSETH Y
[1] H+Y

[2] v
He2
SETH S
H

VZ+«GETH
[1] Z+H

[21] v
GETH

If+2
GETH

6.2 DEFINED FUNCTIONS 181

Another example is the RTR3 function defined previously. That is:

VR<X RTR3 Y

[11] De((X*2)+Y*2)% .5
(2] P+«X+Y+D

€3] Ae SxXxY

(4] R«D,P,A

(51 v

In the function, the variables D, P, and 4 are used as temporary variables
—but might possibly conflict with important variables outside of the func-
tion definition. For example:

P+1.0545E8 27
A+6.02250F23
D«0.367894411
7«3 RTR3 4

P

12
A

D

Thus, the values D, P, and A that were stored previously have been
respecified from within the invoked function.

In a case such as this, the variables D, P, and 4 could have been de-
clared as local variables. A /ocal variable is one that retains its value only
within the execution of the function in which it is declared. A variable
which is local to a function is dominant over global variables with the same
name when that function is active. Local variables for a function are
placed as a list after the function prototype in the function header state-
ment. Each local variable listed in the function header must be preceded
by a semicolon. For example:*

*The system command JCLEAR activates a clean workspace for the user A clean work-
space contains no defined functions, variables, or other system conditions

182 TOPICS IN PROGRAMMING

YCLEAR

CLEAR |WS

VR<X RTR3 Yi;P;D
[11] De((X*2)+¥%2)% .5
21 P+XxY+D

3] A+ . 5xXxY

Tu] R+«D,P A

[5] v
P+1.0545E 27
A+6,02250E23
T+«3 RTR3 U4

P-
1.054§E727

VALUE |[ERROR

Local variables are particularly useful when developing a function that is
to be used by a number of people to avoid conflict with variables that
might otherwise be in use as global variables.

Function Modification

In the course of developing a function, especially at the terminal, many
problems arise which require that the function be modified in some way.
In most cases, the modification involves a display of the function (or part
of it) followed by an addition, deletion, insertion, or replacement of one
or more statements.

As mentioned previously, the body of a function is not checked by the
computer as it is entered—however, the function header is. This fact is
used with examples of function editing. The following function is defined
for use in examples:

VDUHMYFCN
[1] LINE1
[2] LINE?2

[3] LIRNE3
[yl LINEY
[51] LINES
[6] LINES
(71 v

6.2 DEFINED FUNCTIONS 183

The various methods of modifying a function are presented in the follow-

ing form:

Type of modification or operation,
Comments (if any),

General form, and

An example.

FCN is used as a dummy function name and N is a statement number.

1. List a closed function.

General form:

VFCN[O}V
Example:
voUMMYFCNLOlvV

v |pUuHMYFCH
[1] LINE1
[2] LINE?
[3] LINE3
Cu] LIILCu
[s] LINES
[6] LINL6

U

2. List a closed function and leave it open to perform additional modifica-

tions.

Generai form:

v FCNIO]
Example:
vouMMYFCNLO]
v |puiitiyren
[1] LINE1
[2] LINE?
[3] LINE3
C4] LINEY
[s51 LINES
[561] LINLG
v
{71

184 TOPICS IN PROGRAMMING

3. List an open function.
General form:

[0}

Example:

VLISTFCH
(1] LIiE1
[2] LIIIE2
[3] (]

vV |(LISTFCH
(1] LIiU1
[2] LINE?2

[3]

4. List an open function and leave definition mode.
General form:

(O] v

Example:

VLISTFCH
(1] LINE1
[2] LINE?2
[3] [0lv
VILISTFC
(1] LINC1
2] LINE?2

5. Display a statement of a closed function.
General form:

VFCN[NQO]V

Example:

6.2 DEFINED FUNCTIONS 185

6. Display a statement of a closed function and leave it open for further
modification.
General form:

v FCNIN]

Example:

voultdYFCNL 3(]]
(3] LINE3
[3]

7. Display a statement of an open function and leave definition mode.
General form:

(VO ©

Example:

VLISTFCN
[1] LINE1
(2] LINE?2
3] LIRE3
Cu] [20]v
[z] LINE?2

8. Display a statement of an open function and change it.
General form:

[NO]

Example:

VLISTFCN
(1] LINE1
(2] LINE?2
|03l LINE3
Cu] [20]

[2] LINE?2
[2] LINE TWO

[3] [(alv

VY ILISTFRC
(1] LINEL
[2] LINE TWO
[3] LINE3

186 TOPICS IN PROGRAMMING

9. List a closed function beginning with line N leaving it open or closed.
General forms:

v FCN{ON]
v FCN[ON] V
Examples:
VOUHNYFCRIIL]V
Cu] |LIdTw
(5] |LINES
(61 |cIare
VDYMMYFCNL OS]
(5] |LINES
[6] LINES
(6]
10. Display a function header.
General forms:
VFECNOO]V
(o0
Examples:
vDUHMItYFCNL 0019

(o) DUMAYFCN

VLISTFCN
(1] LINE1
(2] o0l
o] LISTFPCH
(o]

Thus, a function header has statement number zero. It can be
modified, as any other statement, using that statement number.

l1. Override a statement number.
General form:

[N]...

Example:

VDUMMYFCN
{3] LINE THREE

r271 rryegpa
L/d LINLT

[Wam W
@™ =3
(S O R

12. Insert a statement.

General form:

6.2 DEFINED FUNCTIONS

[N.M]...
Example:
VDUMMYFCN

[e] (4,2] INSERT LINE
(4.33|C0O1

v |pUMMYFCHR
[1] LINE1
[2] LINE?
[3] LINE THREE
(4] LINEY
(4.2) |INSERT LINE
[5] LINES
[6] LINES®
(73 LINE7

v
(8] v

TDUMHYPCNLI]V

v |DUMMYFCH
(1] LINE1
[2] LINE?2
(3] LINE THREFE
(4] LINEY
[s] INSERT LINE
(6] LINES
(7] LINE®6
(8] LINE7

v

187

In the preceding example, the statements are renumbered when the
function is closed.

13. Delete a statement.
Comment:; This operation is essentially implementation-dependent.
General forms:

[N] line feed (IBM 1050 terminal)
[N} attention (IBM 2741 terminal)

188 TOPICS IN PROGRAMMING

Example:
VDUMMYFCN
[93 (51
v
[6] £l
v |DUMIYFCR
(1] |LINE1
(2] |LINE2

(3] LINE THREE
(4] LINEY

(6] LINES
£71] LINEG
(8] LINE7?
v
(9] v
VDUMMYFCNL[1]1V

T IDHAMYDON
¥ Lo = o B Al W |

(1] LINE1

(2] LINE?2
[3] LINE TIREE
(4] LINEY
[5] LINES
(6] LINEG
(7] LINET
v

|4. Enter the definition mode for an existing function.
General form:
VFCN

Example:

VDUMMYFCN
(8]

15. Open a function, change a statement, and leave the definition mode.

General form:

VFCN[NL.. V

Example:

6.2 DEFINED FUNCTIONS 189

(1]
£21]
[3]
(4]
[51
(6]
(7]

VDUMMYFCNL 1] LINE ONEV
VOUMMYPCNLO3v

DUIIMYFCN

LINE ONE

LINE?2

LINE THREE

LINEY

LINES

LINES®

LINE?7

16. Open a function, change a statement, and remain in the definition

mode.

General form;:

Example:

VFCNIN)...

2]

(1]
2]
(3]
(4]
(5]
(6]
7]

(8]

VDUMMYFCN(1] LINE WON
al

DUIIMYFCN

LINE WON

LINE2

LINE THREE

LINEY

LINES

LINE®

LINE7

The closing del need not be placed in a separate statement. A del found
anywhere in a statement, except a comment line or within quotes, will

close that definition.

A comment line may be inserted with the composite character A,
formed by overstriking a o with a N, which must be the first character of
a line. Ais called the /lamp symbol, for example:

(1]
(2]
(3]
(4]
(5]

VR<X PLUS Y

A THIS IS A VERY SIMPLE FCN
ReX+Y

A THIS DEL DOES NOT END FCN ©
A BUT THE NEXT ONE DOEsS ...

v

1 PLUS 2

190 TOPICS IN PROGRAMMING

6.3 SEQUENCE AND CONTROL

As mentioned previously, statements within a function are executed
sequentially. It is well known, on the other hand, that many algorithmic
processes require that parts of a function be repeated. The branch oper-
ation in APL provides a facility whereby the normal sequence of oper-
ation is interrupted and execution of the function is resumed with another
statement.

Exit from a Function

Thus far, a function has been entered at its first statement, that is, state-
ment number one, and it was executed until no statements remained. In
other words, control flowed out of the function. The branch operation, to
be covered next, passes program control to a given statement, by means
of its statement number. It can also be used to exit from a function by

ramaliien o o tarmramnt muvmbharad s2ae~ e MmAamavictant [F-T o W-T08

blallbllllls I.U a BLGLCIIICIII. HHUuIluLlIvu Zviv vl I.U a HUIIIVAISLWGIIL Dlalclllclll
number. The three ways of exiting from a function are summarized as
follows:

1. By flowing out of the function.
2. By branching to a statement numbered zero.
3. By branching to a nonexistent statement number.

Branching

The general form of the branch operation is:
> S

where S is any program constituent that can be reduced to a numeric
value. The branch is a monadic operation and causes execution of the
function to be directed to the statement numbered by the value of the
expression to the right of the branch operator. In a statement with a
branch operation, no symbols can appear to the left of the branch oper-
ator.* If the operand of the branch operator is omitted, the current func-
tion is terminated as well as the entire sequence of functions (if any) which
invoked the current function.

Branching can be used in a variety of ways. If N=3 and ¥=345 7, for
example, then all of the following branch statements transfer function
control to the statement numbered 3:

-3
>N
>V

*Except a statement label followed by a colon (covered in the next section).

6.3 SEQUENCE AND CONTROL 191

In the latter case, the system always uses the first element of a vector to
determine the number of the statement to which to branch. This conven-
tion is described more formally later. The operand to the branch operator
can also be an expression. If N=3, then the following statement:

>(N*2)+1

branches to statement numbered 10. In the next example, the computer
branches to the statement numbered 10 if 4>8 and to statement num-
bered 20 if A < B:

>((A>B)x10)+(A4<B)x20

The following script, which contains a function to compute gross pay,
uses a branch operation similar to the one just mentioned:

VPAY<«HOQURS GROSSPAY RATE
[1] +((HOURSsu0)x2)+(HOURS>40) x4
[2] PAY+«RND HOURSxRATE

[3] +0
[u] PAY«RND RATEx40+1.5xHOURS-40
[5] v

35 GROSSPAY 1.00
as

40 GROSSPAY 2.50
100

50 GROSSPAY 1.63
89,65

32 GROSSPAY 2.19
70.08

The function uses the RND function to round the gross pay to two
decimal places.

VR<RND T
[1] R+«(LO.5+100xT)+100V

The next function,* which builds a table of integers along with their
squares and cubes, exhibits a situation where a branch is taken or an exit
is made from the function.

*This version will be improved upon in subsequent examples

192 TOPICS IN PROGRAMMING

VTABLE NI
[11] +({>0)x2
[2] I<0

£3] I«I+1
[u] I, (I%x2),(I*3)
[5] +(IsN)x3

(6] v
TABLE 5

1 1]1

2 4 |8

3 9 |27

4 16| 64

5 251 125

6 36| 216

After this brief introduction, the branching operation can be treated in
more detail. In the statement

>S

the numeric value of § determines the statement number of the statement
to be executed next. § may also indicate that the function is to be termi-
nated, in which case a statement from a calling function is executed next.
The following conditions apply:

1. If the value of 1+ S is a statement number in the function being
executed, then the next statement executed is the one numbered as
1+8.

2. If the value 11 .S is not a statement number in the function being
executed, then the execution of the function terminates.

3. If S is an empty vector, then no branch takes place and the next
statement in sequence is executed.

The last case has not been seen before and can take a variety of forms. In
general, an empty (i.e., null) vector can be computed in the following
ways: 0/S, 0pS, and Sx:0. Given an expression XrY which can produce
the value 0 or 1, then the following statements:

>(XrY)/S
~(XrY)pS
>SxXrY

branch to statement numbered S or execute the next statement depending
upon whether XrY produces the value | or 0, respectively.* Note here

*Ordinarily, r will be one of the operators < < = > > = \V A ¥ A

6.3 SEQUENCE AND CONTROL 193

that S can be zero resulting in a branch-out of the function if the relation-
ship XrY is true. For example:

VBEFCN
[1] YENTRY?
[2] +(X>Y) /S
[3] YCONTINUE'
Cu] >0
[5] '"BRANCH TAKEN'
[6] v

X +<10

Y+ 5

S5

BFCN
ENTRY
BRANCH TAKEN

X+ 0

BFCN
ENTRY
CONTIMUE

X+10

S +0

BFCN
ENTRY

A branch to one of two statements S| or S2 can be specified in the
following ways.
> (S1, S2)[1 +ArY]

TS_LFLN wr o wrh]

~((XrY),~XrY)/S1,82

Clearly, the last form can be extended, as required. A branch to one of
several statements can be specified as:

> NOL
or
> L[N}

where N is a counter, L is a vector of statement numbers, ® is the rotation
operator, and the branch operation selects | + L as the statement number
of the next statement to be executed.

As examples of the preceding variations, consider three simple
problems.

I. Generation of N terms in the Fibonacci sequence.*

*Introduced in Section 5 2

194 TOPICS IN PROGRAMMING

2. Evaluating the step function:
y=0, if x<0
y=13.2, ifO<x<l131.4
y=50, ifx>1314

3. Providing a multibranch function TROUBLEREPORT whose oper-
and is an integer indicating an error message to be selected.

All three functions are provided in the next script.

VL+FIB N;I
(1] +(N22)/u
[2] 'VYALUE ERROR!

[3] +0
Cul L+1 2
(5] I+2

[61] +(IzN)/0
[7] L+L,LI{pL)-1)+LpL]

(8] I+I+1
(9] +6
f10] |V
FIB 5
1 2]3a 5 8
FIB 10

VY+STPFCN X

(1] +((XSO).((X>O)AX5131.u).X>131.u)/2 35

[2] +Y+0
[3] ¥+13.,2
Cu] +0
[s51] Y+50
[61] v

STPFCN "1
)

STPFCH 100
13.2
STPFCN 1E3
S50

6.3 SEQUENCE AND CONTROL 195

VE«TROUBLEREPORT I;L

(1] +{((I>5)vI<0)/14

[2:} L+2%1%165

£31 +{I-1)9L

Cu] E+'NUMBER NROT IN SYSTEA!
[5] >0

[6] E«'"TNCORRECT SIGN-ON'
(7] +0

(8] C+«'ALREADY SIGNED O
(o] >0

(101 |E«'NUIIBER IN USE!

[11] [+0

[12] |E+«'NUMBLR LOCKED OUT!
131 JoO

141 |'"IMPROPER TROUBLE REPORT!
(151 |+

[16] [

TROUBLEREPORT 2
INCORRECT SIGN-ON
TROUBLEREPORT S
NUMBER| LOCKED OUT
TROUBLERLPORT 10
IitPifORER TROUBLE RLPORT

Statement Labels
One of the disadvantages of branching, as it has been presented thus far,

,arTIT

ﬂ ."Iﬂ Pll-ﬂf\ A G I\-ﬂ Fal B a B F-To R 2 Lol oW, ¥-1 ﬂllmk Q "_
oLy, Tejuil

tha
is tlldl Auu\,uuu luuuul\.,a.uuu wall lvalldlligv LIIG DI.GI.GIIIUI.II. v

ing a probable modification of some branching statements as well. APL
obviates this difficulty by permitting statements to be given a name, called
a statement label. A statement label is an ordinary scalar variable which
has the value of the statement number with which it is associated. A
statement label is local to the function in which it is used and assumes
its value when the function definition is closed and resequencing has been
performed.

A statement is given a label by preceding the body of the statement by
a name and separating the two with a semicolon as follows:

LOOP: A+B+C

+LOOP

196 TOPICS IN PROGRAMMING

The following script, which uses statement labels, modifies the previous
TABLE program so that the output is produced in columns that are verti-

gy | | 10 1.
cally aligned:

(1]
[21]
(3]
Cul
[5]
(61
[71]
[
(9]
[10]

WAS 10

Y EWN

INVALT]

VITARLE ;T

>(N<0)/ERROR

OUTP+10

T+0

INEXTI: +»(N<I+I+1)/PRINT
OUTP«0UTP, I ,{(I*2),(I*3)

>IDXTI

PRIJT: (N,3)p0OUTP

-0

FRROR: YINVALID OPERAND T0O ''TABLE'' FCN!
v

JDIGITS 3
TABLE 6
1 1
4 8
9 27
16 64
25 125
36 216
TABLE O

D GPERAND TO '"TABLE' FCl

Upon reviewing the output, it seems reasonable to edit the above function
so that an appropriate title is given:

6.3 SEQUENCE AND CONTROL 197

N PABRLE[1,1]

1.2 |*"
[1.21} hii Nx2 Nx3i
[1.3]1 F

VPARLELD]V

Vv |PABLE NI
(1] +(J<0)/ERROR

[21] vy

[3] ' i %2 Hx 3
[u] OUTP+10

£s] I<0

(61 |WEXPI:+(N<I+I+1)/PRINT
(7] |ovrp«oUTP,I,(I%2),(I*3)
[8] |»wnEXTI

[9] |pRInT:(W,3)p0UTP

(101 |~»0
£11] |ERROR:'INVALID OPERAND IO tYPABLEYY PO
v
TABLE S
N Nx2 %3
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125

Llooping

When an algorithm requires that a sequence of steps be repeated, the
corresponding program can be constructed in one of two ways: (1) The
program steps can be duplicated the necessary number of times; and (2)
the program can be written to execute the same steps iteratively. For
long or complex programs, or when the exact number of iterations is not
known beforehand, the iterative method is usually preferred.

A series of statements to be executed many times is called a loop, and
the statements in the loop are called the range of the loop or the body
of the loop. One pass through the loop is termed an iteration. A loop
must be executed a certain number of times, and some mechanism must
determine whether the required number has been reached. One of the
mechanisms for doing this is a control variable which is set to a given
value initially (usually zero) and is increased by another value (usually
one) for each iteration that is to be made. The process also requires a
limit value, which determines the upper limit on the number of iterations.
Loops may also be programmed in another manner. The control variable

198 TOPICS IN PROGRAMMING

may be set initially to the limit value and it is decreased for each iteration
until zero is reached. If the control variable is used as an index or data

~ e O, J . [

value in the loop, then this use frequently determines the direction in
which the control variable should be sequenced. In still other cases, a
control variable is not required and the program iterates until a specified

condition is met—such as a residual value being less than a certain

Initialize

1

Update Control
Variable(s)

Terminate
Processing

Decision

Continue
Processing

Body of Loop

Fig. 6.1 Program loop.

tolerance value. Figure 6.1 depicts the required steps in a loop; they
are summarized as follows:

1. Initialization. Variables are given initial values; special conditions
are checked; and control variables are given appropriate values.
Program control is never returned here.

2. Update. The control variable is updated to correspond to the next
iteration.

3. Decision. A testis made whether the necessary number of iterations
has been made. If so, then an exit is made from the loop; otherwise,
control passes to the body of the loop.

4. Body of the loop. The required calculations are made for each itera-
tion. Control passes to the update step.

6.3 SEQUENCE AND CONTROL 199

The preceding steps have described the method of leading decisions.
Clearly, it is feasible to place the decision step after the body of the
loop—except in one case. That is when a check shouid be made to deter-
mine if the loop should be executed zero times. Because of the array
operations in APL, the need for loops is diminished significantly. The
next script computes the square root R of a value X and uses the follow-
ing relationship:

R« R+5x(X+R)—R

The program uses an initial guess (R=1) and iterates until the residual
|(R*2)- X is less than a given tolerance E.

VR+SQRT X;E
(1] +(X>0)/INIT

[2] 'VALUE ERROR®
[3] +0
[u] INIT: E+,001
[51] R+1

61 TEST: +((1{(R%2)~X)<E}/0
7] R+R+.5x(X+R)-R
(8] +TEST

[9] v
SQRT 1
1
SQRT 25
5
SQRT 6,25
2.5
SQRT "1

VALUE |ERROR

The next example uses a control variable and smooths a given function
by a simple averaging method. Consider a vector X" with indices running
from | to pX. A given component X[/], for [>1 and I<pX, is smoothed
by the expression:

SUI=(XU =1+ X[]+ X[[+1])+3

The function returns a vector which has two less components than the
original vector.

200 TOPICS IN PROGRAMMING

VS+SMOOTH X;I;L

(1] +{((pX)>3)/INIT

£2] *DATA ERROR®

(3] +0

(4] INIT: I+1

[51] L+(pX)-1

(6] S+10

(7] LoopP: I+T+1

(8] +(I>L)/0

(9] S+«5,(X[I-121+X[I)+X[I+1])%3

(10] [+LOOP
(11] |9

SMOOTH 1 3 5 7 9

3 5 |7

SMOOTH 2 10 6 8 16 12 2 4 6 8 7
6 8 |10 12 10 6 4 6 7

Collectively, defined functions and sequence and control facilities en-
able APL to be used as a programming language in addition to its direct
mode of execution. One topic, usually associated with programming, has
yet to be introduced: input and output. Although APL contains no facili-
ties for file processing, it does contain operators for both character and
numeric I/O. Moreover, input and output operators can be embedded in
mathematical expressions and may be used as ordinary constants or vari-
ables are used.

6.4 INPUT AND OUTPUT

It is most desirable in a programming language to provide input facilities
that are under control of a program that is being executed. That is, the
program should be able to indicate to the user that it is time for him to
enter some data. Output is not as significant, but a more general facility
should be provided than simply permitting the user to enter a statement
where the last operation is not a specification. The material is presented
as four topics: numeric input, evaluated input, character input, and
output.

Numeric Input

The quad symbol [is used to indicate numeric input to a program. In
this context, it can appear anywhere that a constant or variable can be
used, except directly to the left of a specification operator. The computer
halts execution of the statement containing the quad symbol and makes
an input request to the terminal as shown below, After the desired value

6.4 INPUT AND OUTPUT 201

is entered, execution continues as though that value were actually a part
of the statement. For example:

X+2x[]
0:

2

X
y

Y«[:0
0:

3
0:

6

Y
2

The computer prints the symbols [: to indicate that it is time to enter
a value, spaces the carriage one line, and unlocks the keyboard. The user
follows by typing the value and presses RETURN. The computer then
continues with the execution of that statement. Consider another exam-

ple:

YROOT 3 X
[1] LOoOP: X+[0O=x.5
[21] X
£3] +LooP
fu] v

ROOT
0:

25
5
0:

36
6
0:

-

The example, as shown, contains what is termed an input loop. It is
possible to escape from the [J request by typing - as was done in the
example. If necessary, the input quad can be identified by preceding the
statement containing the input quad with a statement that outputs an

202 TOPICS IN PROGRAMMING

appropriate literal. The following examples give some other uses of the
numeric input operation:

VGAME

(1] ‘ENTER O, 1, 2, OR 3!
(21 START: +0¢(4,B,C,BINGO)
3] A: 'SORRY, TRY AGAIN'
Cu] +START

(5] B: 'WRONG AGAIN'

(6] +START

(7] C: "GETTING WARMER'

(8] +START

9] BINGO: ‘BINGO!

[10] |V

GAME

ENTER |0, 1, 2, OR 3
O:

0

SORRY] TRY AGAIN

0
1
WRONG |AGAIN
M:
3
BINGO
VSTATEMERT
1] +~0
£2] 'STATEMENT NO, TWO!
[3] v
STATEMERT
a:

2
STATEMENT NO. TWO
STATEMENT

0

Evaluated Input

The quad symbol, as used for input, is actually more general than im-
plied previously. The input request is satisfied by any valid APL expres-
sion, which is evaluated at the time of entry, and substituted for the quad.
For example:

6.4 INPUT AND OUTPUT

TEA FQ

(1]
(2]
(3]
(4]

P fom

Ow

ON
w

A+0

'TEA FOR TWO!
4
R TWO

VFCN ;A

A+0
(A=2)+(2%4)+1
-1

v

X +2

FCN

1

B

b
+
[y

¥

VADD
+1
1

ADD

Character Input

203

The requirement that literals must be enclosed in quote symbols partially
negates the generality of use principle of APL. The convention is particu-
larly cumbersome for text editing applications where the eventual user

may not be familiar with the APL language.

The quote-quad symbol [1 (formed by overstriking a quad symbol with

204 TOPICS IN PROGRAMMING

a quote symbol) is used to enter character data. The operator functions
in a manner similar to the quad operator with the following exceptions:

1. No input symbol is printed to alert the user.
2. The carriage is not indented.

The user types his character data without enclosing them in quote symbols.
For example:

«0
TEA F TWo

TEA F TWO
T
11
v+
MISSI *IMPOSSIBLE!®

314
20

i+
A

pC

ppC
0

An input loop can also occur with character input. An escape is pro-
vided with the following sequence: @, BACKSPACE, U, BACKSPACE, 7. So
that the symbols print as: @. For example:

ABC;B
1] 0
[2] B
[3l 1
[4]
RC
THESE [EXAMPLES USE THE [0 SYMBOL
31
- -

3
BE CARFFUL OF ¢
15
1y

2
THE NEXT LINE WILL BE O-U-T

Lo Rr J
& 7

v

6.5 PROGRAM CHECKOUT 205

Output

A quad or quote-quad symbol appearing immediately to the left of a
specification symbol indicates that the value of the expression to its right
is to be printed. The output operation is frequently used in a long expres-
sion to print intermediate results or in a multiple specification statement,
For example:

+X+Y+3x2
9
+«!' BYE!
+A+'GOOD' B
GOOD E
+A+<'GO0OD' B
GOOoD E
+X+5
5
B+[J+2 6p0+A+4 3p 7 3 96 51 4 38027
"7 3 o9
6 5 1
4 3 8
o 2 7
7 3 9 6 5 1
4 3 8 ¢ 2 7

6.5 PROGRAM CHECKOUT

It is needless to say that all programs do not work correctly. The symp-
toms are usuailly obvious:* The program stops or incorrect resuits are
computed. With a halted function, the user can diagnose the difficulty,
modify his function, and continue. The reasons for incorrect results can
be detected by a perusal of the statements, by tracing his function, or by
inserting stops at various statements so that he can investigate the func-
tion at that point during the course of execution.

Halted Functions

A function is halted for one of two reasons: (1) The execution of a state-
ment cannot be completed; and (2) the function runs for an inordinate
length of time and the user presses the ATTN key to halt execution. Case
(2) is actually part of case (1).

*In some problems in numerical analysis, it is difficult to determine whether or not the
results are correct but that is a problem for numerical analysts and frequently involves
algorithmic methods, accuracy, and test cases.

206 TOPICS IN PROGRAMMING

If the execution of a statement cannot be completed, the following
steps ensue:

1. An error message (see Appendix B) is printed identifying the error
that was encountered.

2. The name of the function and the statement number of the statement

being processed are printed.

The erroneous statement is printed.

4, A caret is printed to indicate how far execution has progressed in

that statement.

(78

Thus, the execution of the active function is suspended and all functions
which called for the execution of that function (either directly or in-
directly) are left pending. A function in the latter state is said to be
pendent. If a function is halted by the ATTN key, then only step 2 takes

nlacra A cnienandead fuinatinamn ramaine cnnenandad nntil Aane AF threas Arnara_
pracc. A SUSPCNGCU TUnCUON reimaiils SUsponiucd Uil O6C OF uireC gpera

tions is given: (1) A branch, —S, is entered to resume execution at the
statement whose number is S; (2) a branch to zero, 0, is given to
terminate that function; and (3) a branch without a right operand, -, is
entered to clear the suspended and pendent functions.

When a function is suspended, the system is in the execution mode and
the user can perform calculations, define functions, and even modify the
suspended function. He may not, however, modify a function that is
pendent. Consider the following erroneous function:

VEFCN
{11 A+1
{21 B+2
£3] U+1aa1
fu] A,B,U
{51 v

EFCN

SYNTAX ERROR

EFCN[3] vy+1aa1
A

S x2

25

VR+X PLUS Y
[11] R+X+Y

£21 7
1 PLUS 2

3
NEFCNL{3]U+1A1V
>3

C

6.5 PROGRAM CHECKOUT 207

While EFCN was suspended, the user was able to define and execute
another function. Then, EFCN was modified and execution was resumed.

The APL system contains a siaie indicator which gives a list of pendent
and suspended functions. The state indicator is displayed with the system
command)S/, which may be used at any time the system is in the direct
mode. The)S/ display requires some explanation. Consider the following

display:

INY
A[5]
B(6]
7}

Entries marked with an asterisk indicate suspended functions; other en-
tries denote pendent functions. A4[5] denotes that function 4 was sus-
pended just before statement 5 was completed. B[6] means that function 4
was invoked in statement 6 of function B. C[7] indicates that function B
was invoked from statement 7 of function C. The state indicator can be
cleared by entering a -+ without an operand for each * in the list.

Tracing a Function

If a program gives incorrect results and the reason is not obvious from
reviewing the statements, then the user has good reason to trace the
execution of that function.

The trace of a function FCN is specified as follows:*

TAFCN<V

where V is a vector whose components correspond to statement numbers
in FCN. Any statement in FCN whose statement number is in V is
traced. The trace function works as follows: (1) The value of every
statement, whether or not the last operation is a specification, is printed;
and (2) the value of the expression to the right of a branch statement is
printed. All output is identified by function and statement number. For
example:

*1t should be obvious now why names cannot begin with TA

VR+SQRT X3iE
[1] +(X>0)/INIT

21 'VALUE ERROR'

3] 0

fu) INIT: E+.001

{51 R+l

(5] TEST: +((l1(R*x2)-X)<E/O
(7] R+R+.5%x(X*R)-R

{8} +TEST

B v

SQRT 1
DOMAIM ERROR
SQRTLH] TEST:+»((|(R%2)-X)<E/0O
A
ST
SQRTL6] =*
YSQRT(6] TEST: +»((|(R*x2)-X)<F)/0V
+6

IS@QRT 1

JDIGITS 3
WAS 10
S@RT 25
5
TASQRT+R 7
S@RT 1
SQRTLH] O

1

SQRT 9
SQRT(4
SQRT(7
SQRT(S
S@RTL T
SQRT(6
SQRTL 7
SQRT(6
SQRTL7

oADmMml -
LNl LY

3

5

3.4

3.02

3

n
u

e e b e b L e e L

@RT 16
SQRTI[H
SQRT(7
SQRTL 6
SQRT[?

S
]
] 8.5
]
]
SQRT(H]
]
]
]
]
]
]

5.19

SQRT[7
SQRRTL A
SQRT[3
SQRT(S
SQRT(1
SQRRT(4
y

4,14
y

u
4]

TASQRT+1 0
SQRT 4

JDIGITS 10
WAS 3

208

6.5 PROGRAM CHECKOUT 209

The expression TAFCN<0 or TAFCN < (0 discontinues the trace.

Stop Control

When program errors cannot be detected with the trace function, then it
is necessary to halt execution at specific statements so that the user can
“poke” around to ascertain the status of variables and indicators. The
stop control feature operates very similarly to the trace function and
serves that purpose. A statement of the form:

SAFCN <V

is used to establish stop control. Here, FCN 1s the function under study
and V is a vector of statement numbers. Execution of the function is
halted just before each statement whose statement number is in V. For
example:

M+B+C+D+o
VSFCN
[11] A+1
[2] B+2
3] C+3
[u] D+
{51 '‘FINI!®
L6] 7
ISASPCN+2 u
SFCN
SFchl 2]
o d
-2
SFCNIu]
D
0
b4
FPINT
4A,B,C,D
1 2 |13 u
ISASFCN+0
SFCN
FINT

The function name and statement number is printed each time the func-
tion is halted. Stop control is discontinued by SAFCN< 0 or SAFCN< 0.

Program checkout in an APL environment is affected significantly by
the interactive mode of operation. When the user does not have terminal
facilities, checkout is enhanced by inserting output statements at ap-
propriate places in the program. When the program is completely veri-
fied, then the output statements can be removed.

210

TOPICS IN PROGRAMMING

6.6 ANNOTATED SCRIPT OF TOPICS IN PROGRAMMING

Defined Functions

[N o N
~ = O]
e

e Nen Sl anNan o
DN E W
e b b b L

£7]

21

100

VP+«X TIMES Y
PeXxY

v

2 TIMES 2

Z+(25%.5) TIMES 2+2
Z

X+10
JR+ABS X
ReX[-X

v

ABS 5

X

VATTR V

SUMe+/V

MAX«T/V

HIN«L/V

RNGE+MAX-MIN+1

AV«<(+/V)spV

v

ATTR 6

SUM,MAX ,MIN RNGE ,AV
1 4 3.5

VATTR

LOJR+ATTR V
[6)R+SUM MAX MIN ,RNGE AV
L[4l

R+ATTR V

SUM«+/V

MAX+T /V

MIN«L/V

RNGE+MAX-MIN+1

AV+<(+/V)$pV

R+«SUM ,MAX ,MIN ,RNGE AV

v
ATTR 16
1 4 3.5
VATTR{0JR+ATTR V;SUM;MAX ;MIN;RNGE;AVY
SUM+100

ATTR 12
1 0 1.5
SUM

Function header (dyadic func-
tion- explicit result).

End of function definition

Execution of function

Defined function embedded in
expression

Value of X specified
Monadic function header
R and X are dummy variables

X retains value of 10

Function header (implicit re-
sult)

V is dummy variable

SUM, MAX, MIN, RNGE,
and 4V are global variables

No explicit result

Reopen function definition
Change function header
Add statement.

Display function

Close of display
Close function definition
Explicit result

Make SUM. MAX, MIN,
RNGE, and AV local vari-
ables and assign value to
SUM

SUM retains global value

6.6 ANNOTATED SCRIPT OF TOPICS IN PROGRAMMING 21

(1]
(2]
(3]
(4]
[s)
{61
(7]
(8]
(9]

FIB(u]
FIB(5]
FIBL7]
FIB(8]

PTRT 11

g 0 = 0 U N |

FIB(8]
FIB(7]
FIB{8]
FIB(7]
FIB(8]
FIB(7]
FIB(8]
1 2

(1]
£2]

DO E N

WAS 10

D@DE N

WAS 3

VL+«FIB N;I
+(Nz22)/FIBSTART
'"VALUE ERROR'

dt

FIBSTART:L+1 2

T+2
FTBTEST:+»(I2N)/0
L+«L,LL(pL)-11+LlpL]
| T+«7T+1

+FIBTESTY

FIB 7
3 5 8 13 21
TAFIB+4 5 7 8

FTB 7
1 2
2
1 2 3
3
1 2 3 &5
u
1 2 3 5 8
5
1 2 3 5 8 13
6
1 2 3 5 8 13 21
7
3 5 8 13 21
TAFIB«0
WX TABLE Y
RXo.xY
7
? 3 S5TABLE 4
3
9
27
81
JDIGITS 3
D 3 5 TABLE 4
3 5
9 25
27 125
81 625
VDIGITS 10

25
125
625

Define function with statement la-
bels and branching

Close definition

Set trace on statements 4,5,7, and 8.

Discontinue trace

Function definition (two arguments
—implicit result)

Display only 3 digits of a numeric
value,

Reestablish normal printing

212 TOPICS IN PROGRAMMING

Input and Ovtput

‘FIVE FACTORIAL IS ';!5
FIVE CTORIAL IS 120

VFACTORIAL
[11] +[]
[2] 3" FACTORIAL IS ';!'K
[3] 1
fu] v
ACTORIAL
a:
m
4 PACTPRIAL IS 2u
03:
+3
3 FACIYRIAL IS 6
0:
+5
8 PACIWRIAL IS5 40320
03:
CHARACTERS
[11l YLENGTH IS ';p[
(2] 1
3]
HARACTERS
ABC
LENGTHl IS 3
A

LENGTH| IS 7
BE CAREFUL OF THE SYMBOL ¢
LENGTH| IS 26

NEXT '0-y-T7'
LENGTH IS 15
v

Mixed output

Request for evalualed input —uses quad symbol

Invoke function
Request lor input.
Carriage moved up one line and indented

Input may be expression
Evaluated input

Escape from input loop

Character input uses quole-quad symbol

Invoke function
Keyboard unlocked but not indented--no quote
marks required.

Escape from character input loop by entering O.

BACKSPACE, U/, BACKSPACE, T,

SYSTEMS

-]
> 0

o
o2
O &
m har
<Sm

O X
m

7.1 BASIC SYSTEMS CONCEPTS

Certainly, there is more to computing than using a well-designed lan-
guage via a remote terminal device. First, the equipment must be selected,
configured, and then either purchased or leased. Many factors must be
taken into consideration: characteristics of the equipment, areas of ap-
plication, requirements, conversion, compatibility, growth potential—to
name only a few. Next, the equipment must be operated; when, how, and

by whom is frequently of major significance. Lastly, programs must be
either developed or obtained in some way. Often, in fact, the cost of pro-
grams exceeds the cost of the equipment itself. No major solution to
these problems is given—perhaps no easy solution exists. Yet, the reader,
whether he be an APL user, a FORTRAN programmer, or a manager or
administrator, must be familiar with the major problem areas of installa-
tion management. Not all users have access to an APL system or even a
computer with remote computing facilities, but most scientists, engineers,
analysts, or managers depend on computers in their work and have to
deal with subsidiary problems, such as these, that exist in the world of
automatic computation.

Factors in Systems Design and Evaluation

Although the processor is the most expensive unit in a computer system,
its functioning, and its selection as well, is usually obscured by the total
system configuration and the other units in the system; that is, the storage

213

214 COMPUTER SYSTEMS AND DEVICES

unit and the various input/output units. If the purpose of the system is to
service a real-time need, then the speed of the processor is usually deter-

L I . . .

mined by the timing requirements of a physical process. If the computer
system 1s to be used for general-purpose computing, then the amount of
storage, the speed and type of [/O units, and the overall system organiza-
tion also affect the effectiveness of the system.

The selection of a processing unit for a given application is usually
based on five factors: the basic speed of the machine measured in machine
cycles per something, the time required for the execution of critical in-
structions, the appropriateness of the instruction repertoire* to the pro-
jected work load, the functional organization of the processing unit, and
other technoeconomic factors not necessarily related directly to the func-
tioning of the devices under consideration. These factors are summarized
in Table 7.1 along with those for selection of storage units and input/out-

TABLE 7.1 SYSTEM DESIGN FACTORS

Processing Unit Storage Unit 1/0 Units

1. Basic speed (cycles I. Basic speed (ac- . Data rates
per) cesses per) 2. Access time

2. Time required for 2. Size 3. Storage capacity
execution of critical 3. Organization (in- 4. Data organization
instructions ter-leaving) (serial, direct)

3. Instruction reper- 4. Width of data path 5. Data channel
toire capacity

4. Width of data path
5. Processor organiza-
tion (parallelism,

registers)
6. Technoeconomic
factors

put units. Appropriate evaluation and analysis techniques are given in
Table 7.2. The organization of the processing unit is particularly signifi-
cant and relates to factors other than the raw speed of the circuitry. Two
areas are usually candidates for study: the dependence upon references to
storage and the implementation of parallel processes. The dependence
upon storage is usually minimized by providing multiple arithmetic regis-
ters and by fetching instructions ahead of sequence and holding them in
an instruction stack.t Parallel processes are implemented through mul-

*That is, the extent 10 which frequently used operalions must be synihesized from more
elementary operations

tIn fact, in the IBM System/360 model 195 and in the CDC 7600, it is frequently possible
to retain an entire loop in the instruction stack.

7.1 BASIC SYSTEMS CONCEPTS 215

TABLE 7.2 COMPUTER EVALUATION AND ANALYSIS TECHNIQUES

Technique Used Area of Widespread Use

I. Cycle time Measures the speed of storage or a processing
unit. Used mainly as a general indication of
system capability.

2. Addtime Used mainly to compare high-performance
scientific systems This measure is usually
combined with other evaluation techniques.

3. Instruction times Compares the relative times for a given set of
basic instructions. Frequently used to obtain
an overall feeling for the speed of a processor.

4, Instruction mix Gives the time required to execute a set of
instructions, which are representative of a
given class of programs. Usually combined
with techniques (1), (2), and (3) for evaluating
high-performance scientific systems.

5. Kernel problems Representative programs are coded using the
instruction repertoire of the computer being
evaluated. Gives a measure of internal com-
puting speed.

6. Benchmark job streams A means of measuring the throughput of a
system. A collection of jobs is run and the
total elapsed time is measured. This technique
is affected by I/O performance and the soft-
ware available with the computer system.

7. Simulation A complete computer system is simulated by
another computer system, Particularly useful
during the design phase of computer develop-

tiple execution units for arithmetic operations and by partially executing
instructions along the branch and no-branch paths while waiting for the
completion of a conditional instruction.

The storage unit is important for two reasons: (1) It determines the
number* of programs that can reside in high-speed storage and the effec-
tive size of each; and (2) it regulates the speed of the processing unit since
the instructions and operands (i.e., data) are stored there and must be re-
trieved before execution can take place. Therefore, the actual size of
main storage and the manner in which it is organized is usually of con-
cern. With regard to the latter case, spced is hampered by the fact that

comen tho et o wremat

Ve X0 4 2t L “
ESIT (.llV(.’ III l.Il.C SUIIdC Llla.l.. ONncCe a4 unit o1

3
-
1
3
:L

nost storage

*Chapter 8 contains a description of multiprogramming and time sharing wherein two
or more programs share high-speed storage.

216 COMPUTER SYSTEMS AND DEVICES

data is fetched, another unit cannot be fetched until the first unit is ef-
fectively restored.* Therefore, it is desirable to have the storage unit
‘‘‘‘‘‘‘‘‘‘‘‘ formation can be feiched
from one bank while the other is in a restore cycle. The width of the data
path from the storage unit to the processing unit is also relevant. If, for
example, the operand for a particular instruction requires eight bytes and
the width of the data path is only four bytes, then two storage fetches are
required before execution of that instruction can be initiated.

In spite of the complexity and importance of the processing and storage
units, the biggest hindrance to good system design and performance is
input and output (I/O). The difficulty is not surprising due to the fact that
[/O devices are electromechanical while the processing unit and storage
are electronic. However, significant advances have been made. In early
computers (see Figure 7.1), all data entering or leaving the system had to
pass through the processing unit on their way to or from storage, requir-
ing that the system run effectively at /O speeds. The data channel (also
Figure 7.1), which is generally regarded as a small hardware-wired proc-

Storage Unit

\

Processing
Input L Qutput
P Unit P
Early Computers
Data . Data
Input »1 Storage Unit - Output
P Channel € Channel P
; : +
A
| k |
l Processing l
l_____.-_ i = ..-.__.__J
Control Signals Unit Control Signals

Modern Computers

Fig 7.1 Input/output and system organization.

*Which, as a matier of fact, is performed automatically by the circuitry

7.1 BASIC SYSTEMS CONCEPTS 217

essing unit used only for the transfer of data, has enabled 1/O devices to
communicate directly with storage, allowing processing and input/output

to overlap to some degree-—that is, if provided for in the computer pro-
grams, Fortunately, efficient methods of doing input/output are avail-
able with most operating systems and programming languages.

Evaluation of a prospective computer system in light of the complexity
of modern computers is indeed an involved process. Factors affecting a
decision or sequence of decisions are as often economic and political as
they are technical. Nevertheless various methods have been used to assess
the potential effectiveness of a computer system and are summarized in
Table 7.2. Some techniques measure raw computing speed and are useful
for applications requiring high internal speeds, such as particle physics,
or for those where the internal performance must be known expilicitly to
satisfy the needs of a physical process. Other evaluation techniques
measure sequences of instructions and even total system throughput—a
term which implies the maximum amount of work that a complete system
can do in a given period of time. Simulation is another useful device for
evaluating or analyzing performance and relies on another computer to
obtain the best results from the simulation effort.

The performance of a system is influenced to such an extent by system
organization and input/output facilities that both are presented as
separate sections in this chapter. Section 7.2 presents the most popular
ways that systems are organized to increase performance, and Section 7.3
compares | /O devices and mass storage facilities that are currently avail-
able commercially.

Yet, other factors, which can only be mentioned in passing, influence
system evaluation. The problem of conversion, that is, converting an in-
stallation’s programs to run on the new machine, is of major consequence
for installations with a large investment in programming. Standard pro-
gramming languages such as FORTRAN and COBOL are definite assets
in this respect. The possibility of growth should also be of concern. The
capability of adding storage boxes or I/O units without changing the
processing unit can solve many problems caused by the natural increase
in data and in new applications,

Computer System Operation

The effectiveness of a computer system is greatly affected by the methods
used for operation. Three methods have come into widespread use: the
open shop, the closed shop, and time sharing. The open shop is char-
acterized by the fact that users make arrangements for a block of com-
puter time and have complete use of the system during that period. The
open-shop system is particularly attractive to small scientific installations,

218 COMPUTER SYSTEMS AND DEVICES

data processing, or applications requiring a given level of security. The
closed shop requires that the user submit his job to the computer center
so that it can be run on the computer by operations personnel so as to
satisfy installation guidelines. Time sharing, which exists in several forms,
permits the user to access the computer system from a remote location
using data communication facilities, Whereas in the open shop the user
has access to the machine proper, the user rarely even sees the equipment
in the closed-shop and time-sharing environments. An operating system
(see Chapter 8) is normally used in a closed shop to obtain machine op-

erating efficiency.

Programs

Without programs,a computer system is very little more than a show-
piece—although a very dramatic and useful one indeed. Programs can be
categorized in a variety of ways, depending upon the objectives of the
person doing the classification. The needs of the user can best be met
with the following categories: software,application packages,and problem
programs. There is considerable overlap between the categories; how-
ever,the objective here is to give the reader a clear picture of the various
kinds of programs.

Software generally includes the programs necessary to use the com-
puter. Included in this category are system control programs (also known
as operating systems, control programs, executive programs, and system
monitors), compilers and assemblers (that are used to translate source pro-
grams into machine language programs), and wtility programs (such as
programs to dump core storage, initialize direct-access storage, etc.) neces-
sary for maintaining a computer installation. Software is usually available
from the computer manufacturer without charge or for a slight fee de-
pending upon whether he has unbundled* or not. Software is also avail-
able from a software development company on a lease or proprietary
basis or can be developed in-house.

Application packages are usually developed by computer manufacturers
or software development companies to solve a well-defined class of prob-
lems. Included in this category are general-purpose programs related to
the following topics: sort/merge, matrix algebra, linear programming,
differential equations, report generation—to give only a few examples.
Competition is keen in this category and the prospective user does well by
surveying what is available.

Although many computer scientists would classify compilers, assem-
blers, utility programs, and application packages as problem programs,
the category is reserved here for those programs developed by an installa-

* Unbundling refers 10 the practice of pricing hardware and software separately

7.1 BASIC SYSTEMS CONCEPTS 219

tion for use there—or in a similar environment elsewhere—and which are
not generally for sale. Payroll, inventory, scheduling, and most scientific
programs fail into this class. Aithough most probiem programs are de-
veloped in-house by professional programmers, analysts, scientists, engi-
neers, and even contract programmers, they are occasionally developed by
a software firm on a contract basis.

The category into which a particular program is placed is not of great
importance. The important point is that the various kinds of programs
do exist and that the interested reader should be made aware of that fact.

The Equipment—Purchase, Rent, Lease, or Buy Time

The installation in need of computing equipment has two alternatives:
install the equipment in-house or buy time, as needed, from another in-
stallation. Frequently, an installation will do both as the work load in-
creases and then sell time once the new equipment is installed.

In-house equipment can be purchased, rented, or leased from a com-
puter-leasing company. A sophisticated (i.e., with respect to the use of
computers) user with a substantial programming staff and a work load in
excess of two eight-hour shifts per day is well off by purchasing equip-
ment, if the financial arrangements can be made. Otherwise, rental from
a computer manufacturer or lease from a leasing company is necessary.
Computer manufacturers, as a rule, give shift premiums after the first
shift, making rental attractive. As with many other commodities, the
renter can usually expect modern equipment and conversion aids, when-
ever required. If an installation can be satisfied with equipment on a long-
term basis, then perhaps the leasing company is a good alternative. The
installation can reduce equipment costs considerably with a long-term
agreement. With purchased or ieased equipment, the instaiiation must
plan on maintenance services which are generally available from the
manufacturer of the equipment.

Computer time is also available from service companies and from in-
stallations with excess time. From both sources, either a block of time
is purchased or charges are made on an individual job basis. I[ndividual
charges are usually made on the basis of processor time, external storage,
and operator time used. When a block of time is purchased, the group
purchasing the time is frequently required to furnish their own operator
and storage volumes.*

The remainder of the chapter is concerned with two topics: computer
systems architecture and mass storage and input/output devices. These
topics along with those that have been covered thus far should enable

*A storage volume is usually a removable unit of storage with a separate identity such as
a reel of magnetic tape or a disc pack

220 COMPUTER SYSTEMS AND DEVICES

decision makers to effectively evaluate and install a prospective computer
system.

7.2 COMPUTER SYSTEMS ARCHITECTURE

Systems programmers have developed ingenious methods to alleviate the
1/O problem and to obtain more computing performance out of the
processing unit. Several of these methods have influenced configuration
and operability of the computer system and are presented here. In gen-
eral, the system configurations involve adding at least another processing
unit to the system complex; however, 1/O problems are so acute that
even the cost of adding another processor is usually justified.

Peripheral Computers

The use of a peripheral computer essentially replaces a potentially low-
speed I/O medium with one of a higher speed. With early systems, and
this is partially true today, most input to the system was on punched
cards and a substantial amount of the output was to be printed. A
nominal rate for card input is between 600 and 1000 80-column cards per

Peripheral
Computer

Y

Card Magnetic
Input Tape
Main
Magnetic Magnetic
Tape Input Tape Output

Peripheral _ | Printed
Computer “ | Output

oo]
Punched
ICardOutput

Fig. 7.2 Peripheral computers.

Output
Tape

7.2 COMPUTER SYSTEMS ARCHITECTURE 221

minute, and for printed output, it is 1000 to 1500 120-character lines per
minute. These figures amount to an input rate of approximately 1200
charactiers per second and an ouipui rate of approximately twice that
amount or 2400 characters per second. The fact that an average figure
for magnetic tape input/output is in the neighborhood of 100,000 char-
acters per second led to the use of a peripheral computer to transfer input
cards to tape and output information from magnetic tape to the printer or
card punch, as shown in Figure 7.2. Thus, both input to and output from
the main computer is via magnetic tape. This arrangement more than
pays for the use of the peripheral computer, which can additionally be

used to perform data editing and error checking.

Satellite Computers

The next step, logically, beyond the peripheral computer is a collection of
satellite processors, as shown in Figure 7.3, that are attached to the main
computer. Each satellite processor is capable of being programmed and
can perform data editing and handle the 1/O for a given device type.
Therefore, a high-speed main computer can use a small computer to con-
trol a given [/O unit so that data are available and can be disposed of at

Satellite
Computer
\ m
Salellite . Satellite
Computer Main Computer [;0 0iter
A
f
. /
Satcllite
Computer

_

Fig. 7.3 Satellite computers.

222 COMPUTER SYSTEMS AND DEVICES

electronic speeds. In most cases, the satellite computers contain features
for interrupting the execution of the main computer and for sharing por-

1 +
ions of main storage.

Attached Suppart Processors

An attached support processor (ASP) combined the facilities of several
satellite computers into one high-speed general-purpose computer. An
attached support computer is usually connected to the main computer in
one of two ways: (1) with common access to main storage including inter-
system communication features; and (2) with a channel-to-channel
adapter permitting a data transfer at electronic speeds. An ASP facility
generally relegates a significant amount of work to the support processor
since it is a computer system in its own right; in some cases, a support
processor has been known to have enough processor time available to
process small jobs of its own. Generally, however, an attached support
processor handles all low-speed input and output, editing, and error
checking for a main high-speed processor and relives that processor of al-
most all responsibility for I /O processing. (See Figure 7.4.)

Main Computer

A
Yy

Altached
Computer

.

Fig. 7.4 Attached support processor.

Multiprocessing

A computer system which contains more than one processing unit is gen-
erally termed a multiprocessing system. Multiprocessing is used for either
or both of two reasons: (1) reliability, and (2) increased throughput. In

7.2 COMPUTER SYSTEMS ARCHITECTURE 223

many systems where response is critical, an extra processing unit is made
available, under program control, to take over in the event of maifunction
in the primary processor. In this case, the processing units must have
access to the same storage units and must be able to exchange control
signals resulting from a malfunction alert. Some operating systems also
include multiprocessing facilities as a means of increasing work through-
put. If the processing units share main storage, then the system control
program is also shared and each processor, when looking for work, selects
the next task that is ready for execution. If the processing units share
direct-access storage devices, then each processor has storage units of its
own and selects its next unit of work from an input work queue—stored
on the shared direct-access storage device. Both configurations are de-

picted in Figure 7.5.

Main
Siorage
Data Data
Main B . Main
Computer |~ Control Signals Computer

Shared Main Storage

Main Main
Computer | Computer

Shared Storage Devices

Fig. 7.5 Multiprocessing,

Although the information given here does not tell how to design a sys-
tem or even use one, the various system configurations are representative
of operational systems in the field today. Ciearly, any system design or
evaluation would be performed by systems analysts and would involve a
much deeper analysis of possible alternatives. Systems architecture is a

224 COMPUTER SYSTEMS AND DEVICES

complex business indeed, and there is much to be gained by more fully
appreciating the progress that has been made thus far.

7.3 MASS STORAGE AND INPUT/OUTPUT DEVICES

Mass storage and input/output devices are usually classified by the media
on which the data are recorded. Unit record devices ordinarily pertain to
punched cards where each document is a separate transaction such as a set
of data, or a source statement from a program. Also included in this
category are line printers where each line of printing is a discrete set of
characters. Tape devices pertain to magnetic and punched tape where
information is recorded serially as a continuous stream. Rotating devices
include magnetic discs and magnetic drums where the media are rotated at
high speed and recording and reading are performed with electronic
read-write heads. The section on terminal devices presents keyboard and
cathode ray tube display devices, and miscellaneous devices include work
stations, optical character readers, magnetic card and strip devices, graph
plotters, audio response units, and microfilm output facilities.

Unit Record Devices

Unit record devices include punched card readers, card punches, and line
printers. Punched cards occur most frequently in two varieties:

1. 80-column cards occasionally referred to as Hollerith cards (see Fig-
ure 1.1); and

2. 96-column cards available with the IBM System/3 (shown as Fig-
ure 7.6).

Punched card readers are electromechanical devices which use optical

photocells or sensing brushes to detect the presence or absence of a punch
in a particular position on the card. Card punches operate similarly but
use mechanical devices to punch holes under control of a computer pro-
gram or an input/output control device. The speed of card readers ranges
from approximately 300 cards per minute to about 1200 cards per minute.
Card punches are generally slower and range from approximately 60 cards
per minute to about 500 cards per minute.

Line printers print a line of information (usually 120 or 132 characters)

at one time by one of two methods:

1. impact printing, and
2. chemical or photographic techniques.

The impact technique is used most frequently because it generally gives
better-quality printing—at a loss of line speed. Impact printing uses a
type bar, a print wheel, or a print drum and involves impacting the paper

7.3 MASS STORAGE AND INPUT/OUTPUT DEVICES 225

/ 1234567890)
1 2 34 5 672 0 8 K1112VHBHTHEDDNDUHINTHINDY N
ABCOEFGH I JKLMNOPQRSTUVWXYZ

33 2438 X A7 M M 40 41 42 43 A4 4D A5 AT 45 A9 30 WM 32 33 34 35 M4 37 00 N O M M1) &

Coe< (4| 1$#) 1= /&,%_D7 1¥@V=n

ST MT0TI TR RN TINN T TETE N0 N 62 63 54 85 65 87 S0 88 50 81 52 51 B4 M W

§7 S 9 100 101 102 103 104 108 108 0T 108 158 1O 110 N2 113 HA 1S 1E 7 N N 0 L 1221323 124 U5 B U7 N

RDBDBBBTEDHON N

L] ee
ausuauanuaugwguﬁuauauawgunu
[L NN

[]

uanauannn:u8u”uslomBuauanﬁnwnana’s

N 1II4-3700 v,

“NLDPP=NLO>POD-=-NIODPD
“~NLE&OPI-NL2GPD=NE>D

Fig. 7.6 96-column card (actual size). (Courtesy of IBM
Corporation.)

(and ribbon) with the printing mechanism or vice versa. Chemical or
photographic techniques are generally used in printers with ultra-high
line speed but often result in a lower printing quality. The speed of line
printers generally ranges from approximately 200 lines per minute to
about 1500 lines per minute.

Tape Devices

Tape devices use either magnetic tape or punched tape* and provide
convenience, low cost, and relatively high speed. The major disadvantage
is, of course, that data are stored serially and that access to a particular
piece of data often involves searching down the tape until the required
information is found. Punched tape (see Figure 1.2) comes in a variety of
widths depending upon the number of tracks recorded. Punch tape read-
ers usually operate at from approximately 250 characters per second to
about 1000 characters per second. Tape punches are quite slow with

*Punched tape is usually constructed of paper although a mylar base is used for applica-
tions which require a durable medium.

226 COMPUTER SYSTEMS AND DEVICES

speeds ranging from 50 characters per second to approximately 300 char-
acters per second.

Although magnetic tape is also a serial device, it has some distinct
advantages: (1) speed, (2) convenience, (3) capacity, and (4) low cost.
Most magnetic tape is either § inch or 1 inch wide and is constructed from
a plastic-like base coated with iron oxide. The iron oxide is magnetized to
indicate the presence of information. Obviously, magnetic tapes differ in
length—especially after use. A new reel is approximately 2400 feet in
length, costs approximately $20, and can hold significantly more informa-
tion than $20 worth of punched cards. A 2400-foot reel can hold between
one and twenty million characters depending upon the packing density.
Table 7.3 gives the data rate for magnetic tape at various forward speeds
and at different packing densities. Magnetic tapes are reusable, easy to

carry and store, and come in seven-track and nine-track varieties. The
choice of seven or nine-track is usually dependent upon the internal

£ w i -l e La

coding scheme of the main computer.

TABLE 7.3 DATA RATE FOR MAGNETIC TAPE

Density in Bytes per Inch

Tape Speed in
Inches per Second 200 556 800 1600
36 7.200 20,016 28,800 57,600"
75 15,000 41,700 60,000 120,000*
112.5 22,500 62,550 90,000 180,000

‘Not gencrally available

Rotating Devices

Rotating devices usually refer to magnetic disc and magnetic drum stor-
age. A magnetic disc unit is a stack of rotating discs in which data are
recorded. The number of discs, their capacity, and their removability
differ between the various manufacturers. Figure 7.7 gives several views
of a disc storage unit. Data are addressed by read-write head, track, and
a sector address. The read-write head can be fixed or moving. A fixed
head (view C) eliminates arm movement (since a particular read-write
head is selected electronically), and the only delay in access involves
rotation time. Moving heads move in and out together (view A) or
independently (view B). With a moving head, data access requires that
the head be moved to the required track prior to waiting for rotational
delay. Magnetic discs are regarded as direct-access devices since informa-
tion may be located directly instead of serially locating a particular
address on the device. Removable disc packs are popular since they serve

7.3 MASS STORAGE AND INPUT/OUTPUT DEVICES 227

Read-Write Head

X\ ==
@ - %
(A) Moving Heads

Sector (Move in and out together)
{B) Moving Hcads (C) Fixed Head
{ Move in and out independently) (One per disc per track)

Fig. 7.7 Magnetic disc storage.

as both a mass storage and an input/output medium. Disc units without

removable discs are generally used solely for mass storage.
Magnetic drum, as a device type, usually has a storage capacity greater

than that of magnetic disc and achieves a higher data rate. Magnetic
drums are used mainly for mass storage and achieve high data rates be-
cause the drum, on which data are recorded, rotates at high speeds and
the read-write heads are fixed—one per track (see Figure 7.8). The drum
is usually a precision-built cylinder coated with iron oxide, which is
magnetized to record data. Magnetic drums are frequently used by an
operating system to store programs, such as I/O routines, compilers, etc.,
which are needed on a demand basis but are too lengthy to reside in main
storage permanently.

Although the rotating devices discussed here provide direct-access
facilities, they can also be used to store and retrieve data sequentially.
Therefore, a sophisticated operating system can provide for considerable
generality of use by permitting device types to be interchanged.

Terminal Devices

Terminal devices used with time-sharing systems, data inquiry facilities,
and in general remote computing systems, are primarily of two types: key-

228 COMPUTER SYSTEMS AND DEVICES

Location Read/Write Heads

)
\ J O J

OONION NN N
ANIANAVAN X\

13 sl |

/16/
/IVJ//

00 0l 02
Trach Address

Data Address
0113

Fig. 7.8 Magnetic drum storage.

board devices and cathode ray tube (CRT) devices. Keyboard devices,
such as the one used with APL, are easy to program and arc used ex-
tensively for remote input and output. CRT devices generally come in
two varieties: character generators and point-to-point displays. Display
devices based on the character generator principle usually contain a data
buffer so that information is retained on the screen as long as desired.
This type of display device, when used for general-purpose computing,
also contains a keyboard so that data can be entered, visually inspected,
and sent to the computer.

Point-to-point display devices allow a considerable amount of flexibility
in the type of information that can be displayed but generally require that
the image be refreshed periodically by either the computer or a control
device attached to the display unit. Input via a device of this type is
usually accomplished with a light pen—a pencil-like device capable of
interrupting the display control instructions.

Miscellaneous Input and Output Devices

Several other 1/O devices are commercially available to meet the needs of
specialized applications. A remote job entry (RJE) work station is usually
composed of a card reader, card punch, line printer, and optionally a
magnetic tape unit, and effectively allows a user to send a job into a
closed-shop system from a remote location. Verbal output from a com-
puter can be achieved with an audio response unit, which can select a
message from an audio drum, and transmit it over a telephone line—all
under program control. Optical readers can read magnetic characters

7.3 MASS STORAGE AND INPUT/QUTPUT DEVICES 229

printed in designated portions of a document (such as a bank check) or
can perform a more general analysis using matrix matching, stroke analy-
sis, or curve tracing. Graph plotters use pen and ink for drawing smooth
curves or point-to-point figures under program control or from magnetic
tape using an off-line device. Ultra-high mass storage is achieved with
magnetic cards and magnetic strips. Both devices use iron oxide-coated
media, which operate at low speeds, but are generally removable and ca-
pable of storing literally millions of characters on each card or strip. The
newest computer output medium is called COM, which is an acronym
for Computer Output Microfilm. For certain classes of application, micro-
film output can incorporate both printed and graphic data and make the
information available in one of the well-known forms of microfilm tech-
nology, that is, 16 mm film in rolls, 35 mm film, microfiche, or aperture
cards (punched cards with microfilm windows).

8 PROGRAMMING
SYSTEMS AND
LANGUAGES

8.1 THE CONCEPT OF AN OPERATING SYSTEM

In general, computer systems are used in three ways. The most con-
venient, obviously, is with a terminal device and a remote programming
system, such as APL. However, two other methods are in widespread use.
The first method is called basic programming and involves running each
job separately as shown in Figure 8.1 and described in the following steps:

1. The user prepares his program in a programming language* and has
the information punched into cards or recorded on magnetic or
punched tape.

2. A compiler program, which can translate a program written in a
programming language to one in machine language, is loaded into
the computer.

3. The compiler program reads the program, prepared by the user, as
data and produces a machine language program.

4. The user’s machine language program is loaded into the computer;
the program reads the user’s data and produces results as output.

The operations are usually distinct and require an appropriate amount of
manual intervention between one step and the next. The steps are es-
sentially repeated for each user. The second method (Figure 8.2) uses a
computer program, called an operating system, to reduce setup time be-

*Introduced in Chapter 2

230

8.1 THE CONCEPT OF AN OPERATING SYSTEM 23N

| \ l Compiler

0. .
| Frogiant

|
] —]

Machine

Language
Proviam

ver's Proviam Compuier
L

Y

| H———-— Compurer | ———— \
e e

Dara Resuin

Fig. 8.1 Basic programming environment

tween jobs and to minimize operator intervention. The steps, present in
basic programming, also exist in an operating environment monitored by
an operating system. The major difference is that sequencing between
jobs is automatic and that jobs are submitted to the operating system as
a batch. The last topic is treated in more detail in the following
paragraphs.

Batch Pracessing

The term batch processing originated with early operating systems and
refers to the practice of collecting a batch of jobs and submitting them to
the computer on an input tape. Similarly, output for the entire batch of
jobs was collected on an output tape. A peripheral computer, as discussed
in Chapter 7, was used for the card-to-tape operation and for the process-
ing of the output tape.

The input tape was accessed by the operating system and the problem
programs alike, and when one job terminated, the operating system read-
ied the next job for execution. The early batch environment can be char-
acterized in several ways. First, when a job was given control of the
processing unit, it had complete control until its work was finished. Next,
[/O units were addressed physically so that when a user wanted to change
an I /0O device or device type, he had to recompile (or assemble) his pro-
gram. Lastly, programs to perform input and output were either coded in
assembler language or provided with a programming language, such as
FORTRAN.

232 PROGRAMMING SYSTEMS AND LANGUAGES

Operating Svstem Residence
{ Job Control
Information.

— C Y Y
Q U
ol or
Programs. & Data) /

(Com 7 727777

Job
Initiator

m\ // /4

N
N

) u /Z Reader
4 | %

Srvsiem
Input

Compute
Complex

AITITIHTHn N

\
N

MM

72

Writer

n
5

~

T

Input Output
Queue Quene

System
Output

Fig. 8.2 Operating system environment.

The invention of the data channel (see Chapter 7) changed the situation
considerably. Most importantly, it awakened an interest in operating sys-
tems and encouraged research and development personnel to explore ways
of using the 1/O-compute overlap available with those devices. This re-
search was the forerunner of the modern operating systems, and as a re-
sult of it, three basic components of an operating system were recognized:

. Input-output systems, which provide a software interface between
programs and external I /O devices.

8 1 THE CONCEPT OF AN OPERATING SYSTEM 233

2. Processing programs, such as compilers, assemblers, and problem
programs which process data and produce results.

[. PO a aira A b

3. Siipervi.)urji Sysiems, which pluvtde a l(‘)g,lual interface between the
hardware system and the remainder of the software system.
The new interest in operating systems had three happy consequences:

1. [/O procedures were generalized so that they now exist on a system-
wide basis.

2. The programmer is now able to code his program without having to
commit himself to a particular I/O unit. In other words, he is able
to specify a device symbolically at compile time and postpone mak-
ing an actual device assignment until run time.

3. It was recognized that the natural waits (i.e., for 1/0, etc.) em-
bedded in most programs could be used effectively to run other jobs
in the machine.

Consequences (1) and (2) lead to what is now known as data manage-
ment. The last consequence led to multiprogramming and time-sharing
systems.

Section 8.2 discusses the architecture of various types of operating
systems. In most modern systems, however, a minimal facility is pro-
vided, regardless of the number of user jobs that can reside in the system
at one time:

1. The ability to process jobs sequentially and pass automatically to
the next job when the first is completed.

2. The facility for controlling system input and output concurrently
with the processing of the primary job. This involves the reading of
jobs into the system and stacking them up on direct-access storage
for subsequent processing, and the printing and punching of system
output which is similarly stacked up in direct-access storage.

The latter facility is generally known as SPOOLing.*

Jab Contral

In preparing a program for execution on a computer, the programmer
usually goes through the following steps:

1. Design. The problem is formally stated, the constraints are listed,
and the overall logic is determined.

2. 1/0 requirements. The file organization, access methods, and ex-
ternal devices are specified. This is commonly known as data man-
agement.

*Which stands for Simultaneous Peripheral Output On Line

234 PROGRAMMING SYSTEMS AND LANGUAGES

3. Programming. A programming language is selected, program struc-
ture is established, and the program is developed.

The programs are then ready for computer processing, which requires
use of the operating system. The following information must be available
before computer processing can begin:

. Job control information.

2. Input/output requirements.
3. Source program(s).

4. Data.

Job control information is usually presented on control cards which are
interpreted by the operating system and provide the following informa-
tion; job identification, priorities, and passwords; a specification of input/
output requirements; and requests to have specific processing programs
executed. Two types of data exist: problem data and source programs.
Source programs are data to the language processors; for example, a
FORTRAN or COBOL compiler. Problem data usually follow a request
to have a problem program executed and exist in a form determined by
the particular application. Depending upon the stage of program de-
velopment, the job control information provided to the operating system
may also contain debugging commands and request the services of “‘ser-
vice programs’’ provided by the operating system. Figure 8.3 contains a
sample deck setup.* The various types of control cards are of particular

L J

Data cards here

TN 1
KUN

LOAD ||

ASSIGN 5 TO A10
:]
Fortran program here

RUN FORTRAN
JOB JONES

Fig. 8.3 Sample deck setup.

*The control cards presented here do not correspond to any exisling operating system
but are representative of lacilities that normally exist

8.1 THE CONCEPT OF AN OPERATING SYSTEM 235

interest. The JOB card establishes the programs and data as a unit of
work to the operating system. The RUN card specifies that a particular
processing program is to be executed. The 3§ card denotes end-of-data and
is used to indicate the last card of a particular type. The ASSIGN
card assigns a physical 1/0O device to a symbolic name specified in the
program. The LOAD card initiates loading of the machine language pro-
grams into main storage and readies them for execution. The second
RUN card causes the user’s programs to be executed. Lastly, the user’s
program reads data from the job stream until the final § card is read.

Normally, many users will be contending for the use of the computer
system; it is the function of the operating system to utilize the job con-
trol information to recognize priorities and maintain job schedules in ac-
cordance with installation guidelines.

Control Programs

The input/output and supervisory systems, mentioned previously, were
the forerunners of what are now regarded as control programs. They are
responsible for the overall functioning of the computer system and have
well-defined objectives, that is,

I. To maximize the use of the system’s resources.

2. To provide for the continuous operation of the system.
3. To establish and maintain job priorities.

4. To insure the integrity of individual jobs.

The control programs which satisfy these needs are classed into three
categories—system management, job management, and data manage-
ment. First, the functions performed by the system in response to a job
are introduced.

The system first reads the entire job (i.e., job control information, pro-
grams, and data) into main storage and places it on external storage as an
input job stream; it then initiates the job as a unit of work to the operating
system. This involves creating an initial program structure and forming a
Jjob control block, which will contain execution-control data and identify
the job to the operating system. This function is accomplished by the
system management control program which also performs the following
job-oriented functions for each job on a system-wide basis:

I. Schedules the job for execution on either a priority or a sequential
basis.

Performs actual input/output for all jobs.

Processes normal and abnormal job terminations.

Allocates main storage.

Controls the printing and punching of output files by peripheral

devices.

L N

bl

236 PROGRAMMING SYSTEMS AND LANGUAGES

Other functions are oriented toward a particular job. Job management
routines interpret job control information, execute service requests, and
monitor the execution of processing programs. Data management rou-
tines initiate input and output for the processing programs, maintain
catalogs and libraries, and manage storage buffers.*

The three types of control programs have structural properties which,
perhaps, are as significant as their functions. System management rou-
tines provide a logical interface between the hardware and the remainder
of the software system. Job management routines provide a logical inter-
face between processing problems and control programs. Data manage-
ment routines provide a software interface between processing programs
and external storage.

Most operating systems are interrupt-driven in the sense that the com-
puting system processes a given unit of work until one of two events oc-
curs: (1) It requires a system management function; or (2) a system man-
agement function is required for some other reason on a demand basis.
In either case, the unit of work is interrupted and control is passed to a
system management routine to interrogate the interrupt. These interrupts
are termed hardware interrupts in that they are initiated from an 1/0
device, the processing unit, a machine instruction, or an external elec-
tronic device such as a timer or the computer console. System manage-
ment’s basic function is to respond to these interrupts by classifying
them as to type and by initiating appropriate routines to process each.
In so doing, system management maintains control over system facilities.
The system facilities include the processing unit(s), main storage, and
input/output devices. System management routines have several im-
portant characteristics which enable them to effectively perform the func-
tions listed above:

1. They reside permanently in main storage.

2. They are not directly addressable by processing programs.
3. They execute in the supervisor state.t

4. Only one active copy of each exists in the system.

Job management’s prime function is to monitor the execution of a job.
Although job management routines, like data management routines, are
considered control programs, they do not necessarily reside permanently
in main storage. When system management gives control to a job, it
normally returns where execution was last terminated. If a program in-

*A storage buffer is an area of main storage set aside for use by data management to
increase the efficiency of 1/0 operations

tThe supervisor state is an internal machine state in which machine instructions critical
to the operation of the system can be executed. Ordinarily, only control programs are
allowed to execute in this state

8.2 OPERATING SYSTEMS ARCHITECTURE 237

terrupt is pending, however, control is passed to a subsystem of job man-
agement called the job monitor. This is what is generally meant by a sofi-
ware interrupt. The job monitor interrogates the program interrupt
condition and passes control to one of its own diagnostic routines or a
routine provided by the user. A major portion of job management is
concerned with job control information. Usually, job management con-
tains a job control subsystem which reads the input job stream, interprets
control cards, and calls appropriate routines to process them. Generally,
a processing routine exists for each type of control card, although in some
cases, data management routines are used to perform a major portion of
the requested operation. The last major function of job management is to
handle job terminations which may occur on a normal or abnormal basis.

Data management routines provide input/output support for process-
ing programs and job management routines. They are grouped into four
classes:

l. Access routines manage the transfer of data between an 1/0O device
and main storage.

2. Catalog service routines manage the system catalog so that data files
may be referenced by name.

3. Device management routines control the allocation of physical 1/0
devices to a job.

4. External storage management routines determine the manner in
which space on direct-access volumes is allocated to the users of the
system.

Although data management is concerned with input and output, it does
none itself; but rather, it passes program control to a system management
routine to have the operation performed.

The next section, on the architecture of operating systems, is concerned
with the various types of systems. Basically, they all contain system, job,
and data management routines but differ, for the most part, in how the
overall system is organized.

8.2 OPERATING SYSTEMS ARCHITECTURE

Operating systems architecture refers to the overall design of hardware
and software components and their operational effectiveness as a whole.
To be effective, however, an operating system must not only be cognizant
of the collection of hardware and software modules, but must also be de-
signed in light of the programs and data which the system processes, and
the peopie it serves. An operating system is an integrated set of controi
programs and processing programs designed to maximize the overall op-
erating effectiveness of a computer system. Early operating systems in-

238 PROGRAMMING SYSTEMS AND LANGUAGES

creased system performance by simplifying the operations side of the sys-
tem. Current operating systems additionally attempt to maximize the use
of hardware resources while utaiutaii‘iiﬁg 1115" level of work uuu'uguput

or providing a certain level of terminal response. A multitude of pro-
grammer services are usually provided as well.

Categories of Operating Systems

A multiprogramming system is an operating system designed to maintain
a high level of work throughput while maximizing the use of hardware
resources. As each job enters the system, an internal priority, which is a
function of external priority and arrival sequence, is developed. This
internal priority is used for processor scheduling. During multiprogram-
ming operation, the program with the highest internal priority runs until a
natural wait is encountered. While this wait is being serviced, processor

control is turned over to the program with the next-highest priority until

the first program’s wait is satisfied, at which time processor control is re-
turned to the high-priority program, regardless if the second program can
still make use of the system. The first job has, in a sense, demanded con-
trol of the system. The concept is usually extended to several levels and is
termed the level of multiprogramming.

One of the problems frequently faced by installation management in-
volves running two different operating systems, each of which requires a
dedicated but identical machine. A hypervisor is a control program that,
along with a special hardware feature, permits two operating systems to
share a common computing system. A relatively small hypervisor con-
trol program (see Figure 8.4) is required which interfaces the two systems.
Although only one processor is involved, a hardware prefix register di-
vides storage into two logically separate memories, each of which is
utilized by an operating system. Input/output channels and devices are
dedicated to one or the other operating system and use the hardware pre-
fix register to know to which half of storage to go. All interrupts are
indirectly routed to a common interrupt routine which decides which op-
erating system should receive the most recent interrupt. Processor control
is then passed to the hypervisor control program for dispatching. The
hypervisor control program loads the prefix register and usually dis-
patches processor control to the operating system which received the last
interrupt. Alternate dispatching rules are to give one operating system
priority over another or to give one operating system control of the
processor after a fixed number of interrupts have been received by the
other side. Hypervisors are particularly useful when it is necessary to run
an emulator and an operating system at the same time.

Although time sharing is used in a variety of contexts, it most fre-

8.2 OPERATING SYSTEMS ARCHITECTURE 239
Operating System A /O
L J
Common 7/ / \O

Interiupt

/ Storage
Routine A\

—
Opcrating System B

\
_‘ Control

Program

\L

Y

Processor

Fig. 8.4 Hypervisor multiprogramming

quently refers to the allocation of hardware resources to several users in a
time-dependent fashion. More specifically, a time-sharing system con-
currently supports multiple remote users engaging in a series of interac-
tions with the system to develop or debug a program, run a program, or
obtain information from the system. The basic philosophy behind time
sharing is to give the remote user the operational advantages of having a
machine to himself by using his think, reaction, or 1/0O time to run other

programs, Operation of a time-sharing system is summarized as follows:*

Time-shared operation of a computer system permits the allocation of both
space and time on a temporary and dynamically changing basis. Several user
programs can reside in computer storage at one time while many others reside
temporarily on auxiliary storage such as disc or drum. Computer control is
turned over to a resident program for a scheduled time interval or until the
program reaches a delay point (such as an I/O operation), depending upon
the priority structure and control algorithm. At this time, processor control is
turned over to another program. A nonactive program ray continue to reside
in computer storage or may be moved to auxiliary storage, to make room for

*See reference 18, p. 190

240 PROGRAMMING SYSTEMS AND LANGUAGES

other programs, and subsequently be reloaded when its next turn for machine
use occurs,

A virtual system is one that provides a logical resource which does not
necessarily have a physical counterpart. Virtual storage systems>*!' (see
Figure 8.5) are widely known and provide the user with a large single-level
store achieved through a combination of hardware and software com-
ponents. A virtual storage system is characterized by the fact that real

User A's Virtual Storage User B's Virtual Storage

B's loaded
A’s loaded virtual
virtual storage storage

REAL
STORAGE

D5
loaded

C's loaded virtual storage
virtual storage

User C's Virtual Storage User D's Virtual Storage

Fig. 8.5 Virtual storage.

storage contains only that part of a user’s program which need be there for
execution to proceed. The basic philosophy of virtual storage lends itself
to paging (Figure 8.6) and is usually associated with dynamic address
translation, as introduced later in the section.

A virtual machine (30) is an extension to the virtual storage concept
which gives the user a logical replica of an actual hardware system.
Whereas in a virtual storage system a user could run programs, in a virtual
machine a user or installation can run complete operating systems. In
addition to using the virtual storage concept, a virtual machine system
contains a control program which aliocates resources to the respective
virtual machines and processes privileged instructions which are issued
by a particular operating system.

8.2 OPERATING SYSTEMS ARCHITECTURE 24

User User
A [B
%] |

<
-
A |
/ Rceal Storage
|
User User
¢ :%/ °
|

Fig 8.6 Loaded virtual storage.

Although virtual systems are usually associated with time sharing, the
concept is more general and applies equally well to multiprogramming
systems. Virtual systems tend to be most effective in operating environ-
ments where dynamic storage allocation, dynamic program relocation,
simple program structure, and scheduling algorithms are of concern.

In modern operating systems, the allocation of hardware resources
among users is a major task. Two resources directly affect performance
and utilization: storage management and scheduling. Both topics were
introduced earlier. The most widely used implementation techniques are
discussed here.

Storage Management

In an operating system, available storage is usually divided into two
areas: a fixed area for the supervisor program and a dynamic area for the
user programs. If no multiprogramming or time sharing is done, then a
user program executes serially in the dynamic area. When he has com-
pleted his use of the CPU, then the dynamic area is allocated to the
next user.

When more than one user shares the dynamic area, such as in multi-
programming or time sharing, then storage management becomes a prob-
lem for which various techniques have been developed. They are ar-
bitrarily classed as multiprogramming techniques or time-sharing tech-
niques, although the point of departure is not well defined. Multiprogram-
ming techniques include fixed-partition, region-allocation, and roll in/roll
out. Time-sharing techniques inciude core-resident, swapping, and paging.

In a fixed-partition system, the dynamic storage area is divided into
fixed subareas called partitions. As a job enters the system, it specifies

242 PROGRAMMING SYSTEMS AND LANGUAGES

how much storage it needs. On the basis of the space requirements speci-
fied, it is assigned to a fixed partition and must opcrate within that area
USiﬁg plal‘lm‘:u program siructure whenever necessary. Ina Fe?g‘mrf-uuuca-
tion system, a variable number of jobs may use the system. Just before a
job is initiated, a request is made to dynamically allocate enough storage
to that job. Once a job is initiated, however, it is constrained to operate
within that region. In a logical sense, fences are created within the dy-
namic area. Roll in/roll out is a variation of region allocation which ef-
fectively enables one job to borrow from another job if space require-
ments cannot be fulfilled from the dynamic area. The borrowed region is
rolled back in and returned to the original owner whenever he demands
the CPU or when the space is no longer needed by the borrower.

The most fundamental technique for storage management in time shar-
ing is core resident. In a core-resident system, all active programs are
kept in main storage. This method reduces system overhead and 1/0O ac-
tivity but is obviously limited by the size of core storage. Large-capacity
storage (LCS) is frequently used in a hierarchical sense with main stor-
age and provides a cost-effective means of increasing the number of
potential users. Large-capacity storage is sufficiently fast to satisfy the
operational needs of a user at a rcmote terminal. Swapping is the most
frequently used method of storage management in time sharing. At the
end of a time slice, user A’s program is written out to auxiliary storage
and user B’s is brought in for execution. All necessary control informa-
tion is saved between invocations. In the above case, the system would
have to wait while user B’s program was brought in for execution. Thus,
two or more partitions can be used for swapping to reduce the 1/O wait.
The use of several partitions permits other user programs to be on their
way in or on their way out while one user’s program is executing. This
method reduces wait time but increases the amount of system housekeep-
ing and overhead. A variation to the single-partition approach is the
onionskin method used with the CTSS system at M.L.T.! With this
method, only enough of user A’s program is written out to accommodate
user B. In a sense, user A’s program is peeled back for user B’s program.
If user C requires still more space than B, then A is peeled back even
more. In a paging system, main storage is divided into fixed-size blocks
called pages. Pages are allocated to users as needed, and a single user’s
program need not occupy consecutive pages, as implied in Figure 8.6.
Thus a translation is required between a user’'s virtual storage, which is
contiguous, and real storage, which is not. A technique called dynamic ad-

dress translation is employed that uses a table look-up, implemented in

hardware, to perform the translation. First, the address field is segmented
to permit a hierarchical set of look-up tables (Figure 8.7). Then, each

8.2 OPERATING SYSTEMS ARCHITECTURE 243

Scament Page Byte

Fig. 8.7 Segmentation.

effective computer address goes through an address translation process
(Figure 8.8) before operands are fetched from storage. The process is
usually speeded up with a small associative memory (Figure 8.9). When
a user program references a page that is not in main storage, a hardware
interrupt is generated. The interrupt is fielded by the supervisor program
which brings the needed page in for execution. Meanwhile, another
user can use the processor. Look-up tables (Figure 8.8) are maintained
such that when a page is brought into main storage, an entry is made to
correspond to its relative location in the user’s virtual storage.

The methods vary, obviously, in complexity. An eventual choice on

Table Register Virtual Storage Address

Seg Table 002 0l 019

—(D—

Segment Tables

Page ‘T:xblc\ _E
Origin B -
[AV
> I
Core Page Tables
Address

SN 00127 <

- 00127 019

L |

Fig 8.8 Dynamic address translation

244 PROGRAMMING SYSTEMS AND LANGUAGES

Table Register Virtual Storage Address
Seg Table 002 0l 019
R
(-t —
S
Y
Seament Tables 00201 | 00127
Page .T.able\ -
Origin
Associative
r Memory
! Y
~(1)
¢
Core Page Tablecs
Address
00127 —a——]
] y Y
- 00127 019

I

L

Fig 8.9 Associative memory.

which technique to employ depends solely on the sophistication of the
operating system, the access, performance, and utilization required, and
the underlying hardware.

Scheduling

In modern operating systems, the supervisor program assumes the highest
priority and essentially processes and does the housekeeping for interrupts
generated by problem programs and external and 1/0O devices. In this
sense, the supervisor (or the system) is interrupt-driven. It is generally
hoped that the processing done by the supervisor is kept to a minimum,

When the sunervicor hag r'nmnlptpd all nF 1itg tacke 1t must decide to wham
vwinen tne supervisor nas col ted all 135 1aSKS, 11 MuUst GeCiae 16 windtim

the processor should be dllocated. In a single-job system, the running

8.2 OPERATING SYSTEMS ARCHITECTURE 245

program simply retains control of the processor. In a multi-job batch en-
vironment, where the system is performance -oriented but not response-
Gi'iEi'iLcd the processor is 'LiSiially 51vcu to the lusucbt-pi'u’)i'u.y JUU that de-
mands it. This philosophy is generally termed multiprogramming as
discussed previously.,

In a time-sharing environment, performance is measured in terms of
terminal response, and processor scheduling is oriented towards that end.
Thus, a user is given a slice of processor time on a periodic basis—fre-
quently enough to give him the operational advantage of having a ma-
chine to himself. The scheduling philosophy is influenced by the user en-
vironment (i.e., compute-bound jobs, small jobs, response-oriented jobs)
and the method of storage management, Three strategies have been used
frequently enough to warrant consideration. The most straightforward
method is round robin. Jobs are ordered in a list on a first-in-first-out
basis. Whenever a job reaches the end of a time slice or it can no longer
use the processor for some reason, it is placed on the end of the list and
the next job in line is given a slice of processor time. A strict round robin
strategy favors “compute” jobs and ““terminal response’ jobs equally and
tends to be best suited to a core-resident storage management system,
With an exponential scheduling strategy, several first-in-first-out lists are
maintained, each with a given priority. As a job enters the system, it is
assigned to a list on the basis of its storage requirements—with lower
storage requirements being assigned a higher priority since they facilitate
storage management. The scheduling lists are satisfied on a priority basis,
no list is serviced unless higher-priority lists have been completed. Termi-
nal (or response) oriented jobs are kept in the highest-priority list—thus
assuring rapid terminal response. If a job is computing at the end of its
time slice, then it is placed at the end of the next lowest-priority list. How-
ever, lower-priority lists are given longer time slices, of the order 21,41,
81,...,s0 that once in execution, a compute-bound job stays in execution
longer. Exponential scheduling has **human factors” appeal in that a
terminal-oriented user, who gets frequent time slices, is very aware of his
program behavior whereas the program behavior of a compute-bound
user is generally transparent to him. One of the biggest problems in
processor scheduling is the difficulty in developing an algorithm to satisfy
all users. The schedule table strategy is an attempt to do that. Each user
is given a profile in a schedule table. When a job enters the system, it is
assigned default values. As the job develops a history, however, the table
values are modified according to the dynamic nature of the program. The

tahl Hacat tha -
scheduler is programmed to use the schedule table in allocating the pro-

cessor while satisfying both user and installation objectives. The schedule

246 PROGRAMMING SYSTEMS AND LANGUAGES

table approach is particularly useful in a paging environment where cer-
tain programs require an excess of pages for execution. Once the required

am tha thalh Ane; o oivan an
Il LIV JUw Lvail uvo EIVCII all

pages have been brought into main storage, th
appropriate slice of processor time.

Scheduling strategies differ to the extent that a different one probably
exists for each installation that is developing one. As such, scheduling
algorithms continue to be the object of mathematical description and
analysis by simulation,

In summary, an operating system facilitates the process of running a job
on the computer—that is, when not using a terminal system such as APL
—and also provides a multitude of valuable services. The next question
is, “If a user doesn’t program in a language like APL, what does he use?”
The answer is that he uses a procedure-oriented language such as FOR-
TRAN, which is presented in the next section.

8.3 THE FORTRAN LANGUAGE

The purpose of FORTRAN is to provide a programming language with
which the scientific community can prepare programs for execution on a
digital computer with a minimum of involvement. The language closely
resembles the notation of ordinary mathematics, and built-in functions
are available for executing most basic mathematical functions, such as
the square root and the trigonometric functions. Additional facilities are
available which permit the programmer to define his own functions and
subroutines as well. Because of its mathematical nature, the language is
computation-oriented, deals with words of data, and possesses a limited
number of data types. As a result, FORTRAN is not generally amenable
to applications that involve character or file operations.

Program Elements

A program in FORTRAN is comprised of a series of statements each
recorded on a source document (usually taken to be a punched card). A
statement may be one of two types: an executable statement or a non-
executable statement. An executable statement may specify computation,
input/output, looping, or program control. Nonexecutable statements
usually provide the compiler with information necessary for compiling*
the computer program.

The basic unit of information in FORTRAN is the character (see Table
8.1) from which operators, constants, variables, and statements are
formed. The FORTRAN operators are given in Table 8.2 and are of two
types: single symbols, such as + or », and composite symbols such as .GE.

*The subject of compiling was discussed earlier

8.3 THE FORTRAN LANGUAGE 247

TABLE 8.1 FORTRAN CHARACTER SET
Alphabetic Characters
ABCDEFGHIJKLMNOPQRSTUVWXYZS
Digits
0123456789
Special Characters
+—x/()=.,"b
TABLE 8.2 FORTRAN OPERATORS
Arithmetic Operators
+ addition or identity
- subtraction or negation
* multiplication
/ division
* exponentiation
Comparison Operators
AT, less than (<)
.LE. less than or equal to (<)
EQ. equal to(=)
.NE. not equal to (=)
.GE. greater than orequal to (>)
.GT. greater than (>)
Logical Operators
NOT .NOT. X is true if X i1s false and false if X is true.
.AND., X .AND. Y is true if both X and Y are true and false, otherwise.
.OR. X .OR. Yistrueif either X or Y is true

or .EQ.. Operators are used in arithmetic and logical expressions and in
subscripts. Names are calied identifiers and serve to denote variables and
statements. A statement identifier, such as GOTO, specifies a particular
statement in the language. A variable identifier is composed of from one
to six alphabetic or numeric characters, the first of which must be alpha-
betic. The following examples give valid and invalid variable identifiers
and several statement identifiers;

Valid Variable Invalid Variable Statement Identifiers
Identifiers Identifiers
ABI2 1AB2 GOTO
ZETA K123456T DO
| A-CD REAL

DO C.D.E IF

248 PROGRAMMING SYSTEMS AND LANGUAGES

There are no reserved words in FORTRAN and spaces are ignored except
in character literals. Thus the following DO statements are equivaient:

DO101=1,10
DO 10i1=1,10

Statements may be numbered by the programmer for reference pur-
poses as indicated in the following statement format:

Columns 1 through 5: statement number (may be omitted)
Column 6: continuation
Columns 7 through 72: FORTRAN statement

A C or an » in column one denotes a comment line, and a nonblank char-
acter in column six indicates a continuation of the preceding line. The
general form of a statement in FORTRAN is as follows:

[statement number) b [statement identifier] statement-body

where the brackets indicate that the enclosed constituent is optional. If
the statement identifier is omitted, then the statement is an assignment
statement. For example:

1 ?

138 READ(N,9000)8,C,D (h
A=B+C*D)
WR|TE(N,9004) A (3)
GO TO 4138 {(4)

Statements (1), (3), and (4) have statement identifiers which are READ,
WRITE, and GOTO, respectively. Statement (2) has no statement identifier
and is an arithmetic assignment statement. Statement (1) has a state-
ment number of 138.

Dota

Five types of data are permitted in FORTRAN: integer, real, double
precision, complex, and logical. In addition, character data are permitted
in certain 1/O statements and as subprogram arguments. The data may
be organized as scalars or as arrays. The size of all arrays must be de-
clared with a specification statement; for exampie:

REAL A(10,10),B(10),XZP1(500)

Fortran assigns defaulit-type attributes in the absence of a specific decla-
ration. Variables whose initial letter is 1,J,K,L,M, or N are defaulted to
type INTEGER. All others are given the type REAL. The user may
override these defauit attributes whenever appropriate.

8.3 THE FORTRAN LANGUAGE 249

Constants may be integer, real, double precision, complex, logical, and
character. Integer consiants, such as —1, 2397, +34, are written with an
optionai sign and without a decimal point. Real constants require a deci-
mal point and may optionally have an exponent of the form: E+i, where
i is an integer. Sample real constants are: 0.0, —2.5, .1E-13. A double
precision constant can be specified in the exponential form by replacing
the E with a D. For example: .12345678910111213D-3. A complex
constant is written in the form (a,b) which corresponds to the complex
number a+bi. Logical constants are the composite symbols: .TRUE. and
.FALSE.. Character literals may be enclosed in quote symbols or be of the
form:

nHc ¢3...Cx

where n is the number of characters in the literal.

An element of an array is selected with a subscript(s) which is enclosed
in parentheses following the variable name. A subscript must exist for
each dimension of the array and multiple subscripts are separated by
commas. Up to seven subscripts are permitted and each must be one of
the following forms: v,c’, v+¢', v—¢', c*v, c*v+¢’, and c*v—¢’, where vis an
unsigned integer variable, without a subscript, and ¢ and ¢’ are unsigned
integer constants. For example:

AB(10)
(3+j—1, 4)
X(K+4,M,N,2+N—1)

Expressions

Operators and operands are combined in the usual fashion to form ex-
pressions, with the following conditions:

1. Two operators may not appear in succession.

2. Mixing integer and real quantities in the same expression is not per-
mitted in some implementations of the language.*

3. Itis not permitted to raise a negative quantity to a real power or
raise zero to a zero power.

A hierarchy exists among operators, and those with the greatest priority
are executed first. Parentheses may be used for grouping to override the
order of execution. For example:

3«4+2=14
3+(4+2)=18

The hierarchy of FORTRAN operators is given in Tabie 8.3.

*Except for exponentiation, see Table 8.4.

250 PROGRAMMING SYSTEMS AND LANGUAGES

TABLE 8.3 HIERARCHY OF FORTRAN OPERATIONS

Operation Hierarchy
Evaluation of functions Ist (highest)
Exponentiation (**) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th
AT., .LE,, .EQ., .NE., .GE., .GT. Sth
NOT. 6th
.AND. 7th
.OR. 8th

Assignment Statements

In FORTRAN, data manipulation is performed with the assignment
statement. Three forms exist: arithmetic, logical, and the ASSIGN. The

form of arithmetic and logical assignment statements is:
v=¢

where v is a scalar or subscripted variable and e is an expression. v may be
a logical variable if and only if e is a logical expression. Thus, the assign-
ment statement can be used to convert values from one type to another.
For example:

A=25
B=3.5
I=A+«B+4+1.0

After the last statement | would have the integer value 9. (Note here that

tem
the partial result 9.75 is truncated to 9 since 1| is an integer variable).
Other examples are:

ZTL=X 4 P(3)*(SQRT(Y)+ 1.0)
T(1+1,K,13) = (A(1,2)+ 13.2+MAX(X,Y))/6.789
U=.NOT.V.AND.W

TABLE 8.4 VALID TYPE COMBINATIONS FOR THE
EXPONENTIATION OPERATOR (*+)

Base Exponeni Resuli
Integer Integer Integer
Daanl) | b P | n_..1
neail jiwepEer, ncail IKCdl
Real Double precision Double precision

Double precision Real, Double precision Double precision

8.3 THE FORTRAN LANGUAGE 251

The ASSIGN statement is used with the assigned GOTO statement and
is classed as an assignment statement for consistency. Its form is:

ASSIGN 7/ TO n
where i is a statement number and # is an integer variable. For example:
ASSIGN 925 TO LOOP

Control Statements

Control statements determine the sequence of control in a program.
Statements are executed sequentially until a control statement is reached.
Then one of three actions is taken depending upon the statement:

I. Execution of the program is suspended or terminated.

2. Control is directed to another statement on a conditional or un-
conditional basis.

3. A statement is executed conditionally.

4. Looping is performed.

The GO TO statements transfer control to a specified statement and has
the form:

GO TO n

where 7 is the statement number of an executable statement in the pro-
gram. The statement numbered » may precede or follow the GO TO
statement, that is:

10... GO TO 20

GO TO 10 20. ..

The arithmetic IF statement permits control to be transferred to one of
three statements depending upon the value of an expression. It has the
form:

IF (e)ny, ny, ny

where e 1s an arithmetic expression and n,, n,, and n; are statement
numbers. Control is transferred to n,, n,;, or n; depending upon whether
e<0, e=0, or e>0 respectively. For example, the step function:

y=0, if x<0
y=13.2, if0<x<131.4
y=50, ifx>131.4

252 PROGRAMMING SYSTEMS AND LANGUAGES

would be computed as:
¥Y=0.0

IF(X)100,100,200
200 IF(X—131.4)57,300,300

57 Y=13.2

GO TO 100
300 Y=350.0
100

The computed GO TO statement permits control to be transferred to
one of several statements depending upon the value of an index variable.
It has the form:

GOTO (n,,n3,n3,....n,), 10

where the n,’s are statement numbers, which do not have to be in

___________ S oem i Rt iyt e P U . PR

sequence, and / is an inieger variable. Conirol is transferred to n, if i 15 1,
n, if i is 2, etc. The following example transfers control to statements
533, 41, or 290 depending upon KL:

GOTO(533,41,290) KL

The logical IF statement allows another statement to be executed
conditionally depending upon the truth value of a logical expression.
It has the general form:

iF ()S

where / is an expression which reduces to a rrue or false value and S is
an executable statement other than another logical IF or a DO statement.
The statement S is executed if / has the value zrue. For example,

IF(X.LT.0.0) X=0.0
IF(A+B.GT.SQRT(BL)) GO TO 600

The assigned GO TO statement has the form:
GO TO k,(n,, nz,n;...,ny)

where the integer variable k has been assigned one of the statement
numbers n, through n,, with the ASSIGN statement. For example:

ASSIGN 7050 TO NLOOP

GO TO NLOOP

The DO statement permits a series of statements, called the range of the
DO, to be executed repeatedly while an induction variable assumes suc-

8.3 THE FORTRAN LANGUAGE 253

cessive values., The general form of the DO statement is:
DO ni=m,, my, m;

where n is the statement number of the end of the range; / is an integer
scalar variable; m, is the initial value for i; m, is the limit value for /; and
mj3, which may be omitted, is the amount that 7 is incremented for each
iteration. If m; is omitted, then it is assumed to be one. The m’s may be
positive integer constants or positive integer variables. The following
statements sum the elements of the vector V, which has a size of N:

SUM=0.0
DO 1001=1,N
100 SUM=SUM+V(l)

The last statement in a DO loop cannot be an IF statement. Therefore,
the CONTINUE statement can be used as a dummy statement terminat-
ing a loop.

Three miscellaneous control statements are also contained in the
language. The PAUSE statement, that is,

PAUSE
or PAUSE n
or PAUSE ‘message’

temporarily halts execution and prints the integer value n or the message
on the operator’s console. The STOP statement, that is,

STOP
or STOP n

terminates execution of the program and prints n on the operator’s
console. The END statement signifies the end of the program or sub-
program being processed.

Input/Qutput Statements

Data can be read from or written to an external device in one of two
forms: formatted and unformatted. Formatted processing uses a
FORMAT statement which describes the data on the external media.
The general form of formatted READ and WRITE statements are:

READ (n.f) list
WRITE (nf) list

where n is the number of an external device and f is the statement number
of a FORMAT statement. The /ist is a series of variables or implied DOs
separated by commas. An implied DO has the form:

254 PROGRAMMING SYSTEMS AND LANGUAGES

(V(S), i=m| » Mo, m3)

where v is an array variable and s is a subscript, with the remainder of the
skeleton being similar to the DO statement. The subscripted variable in
an implied DO may be interpreted as though each occurrence of the sub-
scripted variable were in the list. For example:

READ(5,9000) A,B,K
9000 FORMAT(F10.5,F5.2,18)

WRITE(6,500)C,(A(l), 1=1,10)
500 FORMAT(E5.1,10F6.3)

The format number is omitted for unformatted processing and data are
read or written in a form related to the internal coding structure of the
computer. Unformatted READ and WRITE statements have the general
form:

READ(n) list
WRITE(#n) list

where n is an external device number and /ist i1s a list as discussed
previously.

The FORMAT statement provides a format code for each of the data
types of the language. The general form of the FORMAT statement is:

m FORMAT (q,1,21¢222...0,2,42)

where: |. mis a statement number.

2. (q,1,2\1223...1,2,4,) is the format specification.

3. Each q is a series of slashes or is empty.

4. Each 1 is a field descriptor or group of field descriptors.

5. Each z is a field separator (comma, slash, series of slashes, or
parentheses)

6. n may be zero.
The format field descriptors are of the forms:

srfw.d
srEw.d
srGw.d
srOw.d

riw

riw

rAw

nHe, c,...Ch
nX

8.3 THE FORTRAN LANGUAGE 255

where:
. The letters F,E,G,D,I,L,LA,H, and X indicate the manner of conversion

dﬂ(l CUlllﬂg DC[WCCH lﬂC iﬂleﬂdl dI]U external [CprSCHldllOI]b dl](l arc
called the conversion codes. They may be used as follows:

F —to transfer real data without an exponent;

E —to transfer real data with an £ exponent;

G—to transfer integer, real, complex, or logical data;

D—to transfer real data with a D exponent;

| —to transfer integer data;

L —to transfer logical data;

A—to transfer alphanumeric data;

H—to transfer Hollerith (literal) data;

X —to either skip data when reading or insert blanks when writing.

2. wand n are nonzero integer constants representing the width of the
field in the external character string.

3. d is an integer constant representing the number of digits in the
fractional part of the external character string (except for G con-
version code).

4. r, the repeat count, is an optional nonzero integer constant indi-
cating the number of times to repeat the succeeding field descriptor.

5. sis optional and represents a scale factor designator.

6. Each cis one of the characters in the FORTRAN character set.

Field designators or field separators may be grouped by enclosing them
in parentheses. Repetition of a group is accomplished by preceding the
left parenthesis by an integer constant representing the repeat count.

A scale factor designator is defined for use with the F,E,G, and D con-
versions and is of the form:

nP

where n, the scale factor, is an integer constant or minus followed by an
integer constant. A data format may also be read into the computer
during execution of a program using the A format code. In that case, the
format statement number in the READ or WRITE statement is replaced
by the name of the array variable containing the format.

Three utility statements for input/output are included in the language.
The ENDFILE statement, written as:

ENDFILE n

defines the end of a set of data on an external device n. The BACK-
SPACE statement, d fined as:

BACKSPACE n

256 PROGRAMMING SYSTEMS AND LANGUAGES

backspaces the indicated device one data record. The REWIND state-
ment, written:

REWIND n

positions the indicated device to the beginning of the set of data.

Specification Statements

Specification statements indicate the type and size of variables and de-
termine the manner in which storage is allocated.
The general form of the type statements is:

type x,\ (1) /vy [x2(t2)/va /.. . Xalta)/Va/

where: |. type can be INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or
COMPLEX.

2. x;is the name of a variable.

3. (1;) gives the dimension of a variable where ¢, is from one to
seven integer constants separated by commas indicating the
maximum bound for a dimension—this entry is optional.

4. /v,/, which is also optional, represents initial data values.

For example:

REAL A,B,MTOT(10,5,8),

REAL MTOT, A(10,5), C1(3)/1.0,2.0,3.0/
INTEGER COUNT

LOGICAL U,V,W(10,10)/100+.TRUE./

For variables whose type is declared implicitly, the DIMENSION
statement can be used to specify array bounds. The general form of
the DIMENSION statement is;

DIMENSION X|([|),x:(tz)...
where x; and ¢; are described above. For example:
DIMENSION |AREA(100)

The COMMON statement allows different programs to share the same
storage and has the form:

COMMON /I, /yi./lh [yas. ..

where /, is an optical label and y; is a list of variables. Common blocks
with the same label from different programs share the same main storage

L s wa 2L

in the computer. For example:

COMMON A,B/STAT/M,S,TOT

8.3 THE FORTRAN LANGUAGE 257

The EQUIVALENCE statement has the form:
EQUIVALENCE (x,,x3,x3...),(21,22,23...),...

where the x, and z; denote variables, arrays, or parts of arrays which are
to share the same storage. For example:

REAL A(100),B(50)
EQUIVALENCE (A(51),B)

The DATA statement assigns initial values to specified variables. It has
the general form:

DATA v, vy,...[i*%d, i*d,,.../,...

where v; are variables, i is an optional repetition count, and 4, are data
values of the correct type. v, may be an array or a subscrlpted variable

idad that tha Ant th th e ¢t h al: A
proviaged tnat tne data count agrces ‘v‘v’hu the constituent bei Ing uuualizeu

For example:

REAL A(100)
DATA A/100+1.0/B/34.1/,1/13/

Subprogram Statements

The benefits to be derived from structuring a computer program into
mainline programming and separate functions are well known.* The
needs are particularly obvious in a language like FORTRAN which con-
tains a limited number of operations that are defined primarily on scalar
operands. Four types of subprograms are available in FORTRAN:

[. Built-in functions.

2. Statement functions.

3. FUNCTION subprograms.
4. SUBROUTINE subprograms.

Built-in functions are part of the language and are either open or closed
Table 8.5 contains a representative list of functions of this type. As shown
in the following example, built-in functions are invoked through their use
as a constituent of an expression:

X=-25.0 (1)
Y=SQRT(ABS(X))+2.0 (2)

After statement (2) is executed, Y contains the value 7. Built-in functions
always produce a scalar result although as many arguments as are neces-
sary may be used. Arguments always follow the function name, enclosed

*See Chapter 2

PROGRAMMING SYSTEMS AND LANGUAGES

258

SEVD
INVLIVAI0INVLY
NVLIVAIONVLIV
LYOSD 10 194OSA ‘LADS
HNVL

S0DD 10'S0DA 'SOD
NISD 10°NISA ‘NIS
01901d 1001901V
001D 10 '001d ‘DO1V
dX3D 10 dXAD ‘dXd
DINOD

X1dWO
4714d
DOVINIY

1v3Id
TONS

Widat 1o Wid
NDISA 10 ‘NDISI 'NDIS

(Ip/ 'p)ueiole
(p)umpdie
N_AS

(v)yuey
{p)soo

(p)uis
()0130;
(p)’3o]

o?

1to+ o

(ip''p)mIN—-'D
| '2| sowmn v jo udig

SNINPOJA
Juadueiory
1wadurioay
1001 21eNnbg
wadum o1joqladAy
2UI1S0D dINdWouodI |
auIs o1PWouodu
wyieso] uowwo))
wyledo| jeinieN
[enuauodxg
juswngie
x3|dwoos v jo aednluod mviqO
w.oj xaidwod
ul sjuswngdle [eas om ssardxg
wioj uoisnaid sjgnop
urjuswngie uois1dasd 3jFuis ssardxg
juawngie
x3|dwood jo 1ed ArewmSeuwn wierqQ
uawngie xaidwos jo ued jeas uivlqQ
juswngie uoisoaid
siqnop jo ued yuemiudis 1sowr uielqQ
UAIIJIP 2A1NISO4
ugis jo J9jsues]

X141 1239)1u1 01 [B3J WOIJ UOISIIAUDY) X1

1vO14d [B3J 0] 13821U1 WOJJ UOISIIAUO)D) 10014

INITINQ 10 INIIW ‘ONII ‘INITA Y 'ONTAY (- ot lnynip AM[BAISIRWS
IXVINQ 10 IXVIN'OXVIAN 'IXVIAV 'OXVIANV (" ‘it lp)xe N an[ea 153818
dOWd 10 ‘A0 'A0ONV (‘p pow)'p Fuiispuirway

INIAQI 10 INI'INIV p> 19831u1189818[sawmn e Jo udig uoneouns |

Sgvaio’'sgvi ‘sav |p| SMN[BA AIN[OSQY

SAWDN 21joquIAS uonuLfa(y uonounyg

SNOILDONN4 NVY1304 6°8 319V

8 3 THE FORTRAN LANGUAGE 259

in parentheses and separated by commas. Arguments may be expressions
containing other function references.
O w o _a fh _ar o A C 1 L. aL o o . . MDD
aiement junciionsy dIc AcClnca Dy LIC USCI dld COIISL O ONC F'UIK-
TRAN statement. Ordinarily, the definitions of statement functions come
first in a program and have the following form:

name(x,y,...)=e

where: name is a function name determined by the user.
X,y,...are unsubscripted variables in e.
e is an expression without subscripted values.

For example:

CROOT(X)=Xx+(1.0/3.0)

Z = CROOT(27.0)

After the last statement, Z contains the value 3.

FUNCTION subprograms allow functions to be defined which are not
among the built-in functions and are more complicated than those that
can be defined in one statement. A FUNCTION subprogram is com-
piled independently of the mainline program. Data are passed between
the two modules via an argument list or COMMON storage. A FUNC-
TION subprogram returns a value so it can be used in an expression. The
general form of a FUNCTION definition is:

type FUNCTION name (x,,x;,...)
specification statements (if any)

FORTRAN statements

END
where: rype is optionally INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL (rame may also appear in a type statement).

name is the identifier with which the function will be invoked.
x; are dummy parameters which can be scalar or array variables.

The function name must appear to the left of an assignment statement at
least one place in the function. Control is returned to the calling program
with the return statement. The following function adds the elements of a

vector:

260 PROGRAMMING SYSTEMS AND LANGUAGES

FUNCTION VADD (A,N)
REAL A(N)

VARG _NAN
Y ALY — V.V

DO 50 1=1,N

50 VADD =VADD + A(l)
RETURN
END

Note here that the dimension of A is a variable quantity; this facility is
permitted in subprograms. VADD would be used somewhat as follows:

REAL VECTOR (100)/100+5.0/

MEAN =VADD(VECTOR,100)/100

A SUBROUTINE subprogram is similar to a FUNCTION subpro-
gram except that it does not return an explicit result and it is invoked with
the CALL statement. The general form is;

SUBROUTINE name (x,,x,,...)

where name and x; are defined above. The following subroutine trans-
poses the given matrix (4) and assigns it to B:

SUBROUTINE TRANS (A,B,M,N)
REAL A(M,N), B(N,M)
DO 71=1,M

DO 7J=1,N
7 B(.l)=A())

RETURN

END

It is used as follows:

REAL A(3,2)/1.0,2.0,3.0,4.0,5.0,6.0/,B(2,3)

CALL TRANS(A,B,3,2)

After the last statement, B contains:

i

8.3 THE FORTRAN LANGUAGE 261

Evident here is the fact that arrays are stored in column-wise order with
the first subscript varying most rapidly.

Two final subprogram statements remain. The RETURN statement,
mentioned previously, causes control to be returned to the calling pro-
gram. The EXTERNAL statement specifies that a specific name is a sub-

program allowing function names to be passed among programs.

A Final Note

Many versions of the FORTRAN language are in existence and several
implementations contain statements that have not been mentioned. Some
contain READ, PRINT, and PUNCH statements which are carry-overs
from initial versions of the language. Others contain statements, such as
ACCEPT and TYPE, which refer to a particular mode of operation.

Lastly, many statements reflect new concepts to facilitate the art of pro-
g[amming A discussion of these tnnme 18 hevnnd the scope of this sec-

LS F T LRSI B 1 RS L2 LY S S

tion; the reader is directed to one of lhe blbhographlcal rcfcrcnccs or to a
FORTRAN manual provided by one of the computer manufacturers.

FORTRAN has its limitations, as do most computer languages, and
may even be inappropriate for some applications which are generally
classed as being scientific in nature. The reader is urged to explore some
of the other languages in widespread use today:*

ALGOL 60—The international algorithmic language.
BASIC— An easy-to-use time-sharing language.
COBOL—The common business-oriented language.
PL /I — A multipurpose programming language.
*For a comprehensive treatment of programming languages, see. J. E. Sammet, Pro-

gramming Languages History and Fundamentais, Engiewood Cliffs, N J., Prentice-Hall,
Inc, 1969

BIBLIOGRAPHICAL

REFERENCES

. Berry, P. C., APL/360 Primer (Student Text), White Plains, N.Y., IBM

Corporation, Form C20-1702, 1969.
Brooks, F. P.,Jr.,and K. E. Iverson, Automatic Data Processing: System/360
Edition, New York, John Wiley & Sons, Inc., 1969.

. Calingaert, P., Principles of Computation, Reading, Mass., Addison-Wesley

Pubhshing Company, Inc., 1965.

. Cole, R. W., Introduction to Computing, New York, McGraw-Hill Book

Company, 1969.

Comfort, W. T., ““A Computing System Design for User Service,” Proceedings
of the Fall Joint Computer Conference, 1965

Corbato, F. J., and V A Vyssotsky, “Introduction and Overview of the
MULTICS System,” Proceedings of the Fall Joint Computer Conference, 1965.

. Davis, G. B., Computer Data Processing, New York, McGraw-Hill Book

Company, 1969.

. Corbato, F 1, et al, The Compatible Time-Sharing System, Cambridge,

Mass., The M.I.T. Press, 1963.

. Falkoff, A. D., and K. E. lverson, APL/360: User's Manual, Yorktown

Heights, N Y., IBM Corporation, Thomas J. Watson Research Center, 1968.

. Foster, G H,“APL. A Perspicuous Language,”” Compulers and Automation,

November, 1969, pp. 24-28.

. Gibson, C. T., “Time-Sharing in the IBM System/360. Model 67, Proceed-

ings of the Spring Joint Computer Conference, 1966.

. Golde, H., FORTRAN Il and IV for Scientists and Engineers, New York, The

Macmillan Company, 1966.

1T LLr Pl o VIR e P VPR T o .

F G, IS | o __ s F B o B, W | v o . L A
uscnwina, n. w., Lesign of vigitiai Computers, INEw Y OrK, dpringer-veriag,

1967.

. Hellerman, H., Digital Computer System Principles, New York, McGraw-Hill

Book Company, 1967,

263

264

15.
16.
17.
18

19.
20.
21.
22.
23.

24.

25.
26.
27.

28.

BIBLIOGRAPHICAL REFERENCES

Iverson, K. E., 4 Programming Language, New York, John Wiley & Sons,
Inc, 1962

Iverson, K. E., Elementary Functions: An Algorithmic Treatment, Chicago,
Science Research Associates, Inc., 1966.

Iverson, K. E., The Use of APL in Teaching, Yorktown Heights, N.Y., IBM
Corporation, Thomas J. Watson Research Center, Form 320-0996, 1969
Katzan, H., Jr., Advanced Programming: Programming and Operating Sys-
tems, New York, Van Nostrand Reinhold Company, 1970.

Knuth, D. E., The Art of Computer Programming, Vol |, Fundamental
Algorithms, Reading, Mass., Addison-Wesley Publishing Company, 1968.
McCracken, D. D., Digital Computer Programming, New York, John Wiley &
Sons, Inc., 1957.

McCracken, D. D., FORTRAN with Engineering Applications, New York,
John Wiley & Sons, Inc., 1967.

McDaniel H., An Introduction to Decision Logic Tables, New York, John
Wiley & Sons, Inc., 1968.

Pakin, S., 4 PL\360 Reference Manual, Chicago, Science Research Associates,
| P, 1Q0

1Inc., 1700.

Smillie, K. W., STATPACK2. An APL Siatistical Package, Edmonton, Al-
berta, Canada, Department of Computing Science, The University of Alberta,
Publication No. 17, 1969.

Stein, M. L., and W. D Munro, A FORTRAN Introduction to Programming
and Computers, New York, Academic Press, 1966.

Trakhtenbrot, B. A., Algorithms and Automatic Computing Machines, Boston,
D. C. Heath and Company, 1963.

Weiss, E. (editor), Computer Usage Fundamenials, New York, McGraw-Hill
Book Company, 1969.

An Introduction to CP-67/CMS, Cambridge, Mass., IBM Cambridge Scien-
tific Center, Report 320-2032, 1969.

APPENDICES

=
2>
<
2

The purposes of this appendix are twofold. (1) to give the reader an idea of the
form and structure of programs written in APL, and (2) to present a collection of
useful programs which, perhaps, are representative of the many already developed
in APL and which are available from companies offering APL service. The source
of the programs given here is APL-MANHATTAN, a division of Industrial Com-
puter Systems, Inc. Individual authors are acknowledged, whenever appropriate,

The nature of the programs varies. Some are short and straightforward and
the algorithms used are readily apparent. Others are more sophisticated and fully
utilize the power of APL One of the programs interacts with the user in such a
manner that a programming knowledge of APL is not required The more mathe-
matical functions are intended for use in more comprehensive functions that a
user might be developing,.

The programs are grouped into four categories and organized as follows.

A.l Graph Plotiing
Graph

A.2 Staristics
Descriptive statistics
Probability and correlation
Regression
Analysis of variance
Critical path

A.3 Mathemaiics
Matrix algebra
Curve fitting

267

268 APPENDIX A

Calculus programs

Utility programs
A.4 Business

Compound interest

Investment

Each program listing is given the caption Program Similarly, an application
program is titled Applicarion The numbers agree so that Program 1 corresponds
to Application I, etc.

A.1 GRAPH PLOTTING*

The GRAPH program, listed as Program 1, plots on one coordinate axis any
number of functions of a single variable. The independent variable extends
vertically and the dependent variable is plotted horizontally. Scaling is applied
automatically to keep the range of the dependent variable (ordinate of the curve)
as large as possible but less than a given width, which may be changed by the user.
GRA PH is a one operand implicit result function, used as follows:

GRAPH A

where 4 isan array of rank 1, 2, 3,0or 4. If 4 is a vector, then it is plotted against
its own indices and the number of points is equal to p4. If 4 is of rank 2, then the
(pA)[2] columns are taken as equally spaced abscissa points. The first row is the
set of abscissa labels and remaining rows represent functions, which are plotted
with different symbols (that may be modified). If several points have the same
value, the symbol corresponding to the lowest row number is plotted. Rank-3
arrays are plotted as successive matrices on the same graph. The first row for
planes, after the first one, is ignored. Rank-4 arrays may be plotted if the first
coordinate has an extent of 2. The first coordinate of a rank-4 array is used as a
logic structure to delete elements of the other coordinate (which amounts to a
rank-3 array),

Several global variables govern execution of the function

QOSIZE - sets the maximum length (in typewriter spaces) of the ordinate axis.
ACON —controls the printing of abscissa labels. ACON is expanded cyclicaily
to the number of abscissa points For example, 1 0 0 would label
every third point
SSWITCH —scaling switch: if 1, scaling is computed from the data; if 0, scaling
is determined by the global variable SDATA
SDATA—contains ordinate scaling information SDATA is respecified each
time. GRAPH is invoked with SSWITCH set to 1. One typewriter

*The GRAPH program is listed with permission from W R Newman, APL-
MANHATTAN, a division of Industrial Computer Systems, Inc

f1]
(2]
[3]

re
LV Jd

(6]

VGRAPHLO]vV

G+«GRAPH X ;A;AL;B;C;I;Jd3;K;LyM;0R;RA,SE ;SF;T;W;XL
+((ppX)=14)/ 3 4 5 7

+0,p0«'INCORRECT DATA FORMAT'

X«(2,pX)p(1pX) X

Xe«(1,pX)pX

VIief~¥VYaa
ALTIVPAJP L

+9

XL+X[2;:; 11

X+X[1;;::]

RA«pA«X[1;1;]

AL+«RAp ACON,(0=p ,ACON)/XL[1:1;]

XL d+1;5]«X(;2;]

XLeXLAa(Xzl/CLIPYAXI /CLIP

+{0=8SWITCH)p4+I26
SE“I.10.(1':0)‘?14'2’(((53:0)+SE"(I-/(‘XL)/IX)-C+L/(IXL)/.X)*
QSIZE

SF«((I< 2 4 10 x10xSE)/ 1 2 5)[1]
SUDATA«SF ,SE ,OR+«C-(SFx10xSE+1)|C
X+(X+I)-OR+SDATAL3])+I+(SF+SDATA{1])x10*SE+«SDATA[2]
X«LX+0.5

X«¢f1] 2 1 3 @¢f1] 0 1 0 +X

Me10x[0. 1% /T /T /X+XxXL+($[1] 2 1 3 @df1] 0 1 0 +XL)xY20
A+A-(102])]|A+«A+0.5x10xJ+«1+(L10@]|A+A=0)-J+3+L2100[/1, |A+[/A-
L/A

B«ALN[1]) AL/[13(0TJ-3|I) DFT(RA.,1)pA+10*xL«3x (I+1+]

100l /|A+A=0)+3

BL ;1]+«RApATITLE ,RAp" !

B«(0,2%x0=p ,ATITLE)+B
L+(L%0)/"(x10%",((L<0)/"'-"'),'0123456789"'[1+((1+10s|L)p
10)T|L], ")

A+{(SFx(OR+10)+0,1M#10)x10%x 1+3|5E+2

A«A-(10%xT) |A+«A+0.5%x10*J+ ([10@| A+A=0)-J+1+|L 10 /1,]| At[7A-L /
A

A«([/0,J-1L100]|A+1E"8>|A) DFT((1+M#+10),1)pA
B+1d(((lM/(-(pB)L[2])+ "3 1 2 +W+(pA)[2]),(pB)[2],0L)p0),(pB)
£2]p1)\B

G+«IITLE ,CAR,(([/W- 5 1 0 +W[3]))p"' '),L," \',(6p"* '), QTITLE
.5p"' !

G+G, (C20) /' (x10*' ((C<0)/'=-"),'0123u56789"'[1+((1+
10s1C)p10)T|C+3xL(2+S5E)+3],")!

G;G.CAR.((r/W+ 04 5 -Wl1l)p"' "), ((WE1]p1),(10-W(1])p0O)\
2¢A

We' | ', (pX){1)pSYMBOLS

A+, (pX)E2 1]pdr1(pX)[C+1]

+(pJ+BSWITCHpCAR)p2+I26

G+0p0«G

L«2 ([/(MxC=1,RA),[/X[;:C))p1

LI1+(Cv.=1,RA)x10x1M3+10]+2

LO1+I/,XE3:C))«24 (I« ,XL(;::C]) /A

G+G,J,B[C;],W[L]

+{RA2C+C+1)pRSWITCH+ 5+I26

G+G,CAR

+{((I+0)=pL+LEGEND)p5+I26

G«G,COR, (" ", (pX)[1)pSYMBOLS)[I+I+1],' ',(1+B+«L1CAR)pL
L«(BLpL)+L

+{((pX)[1]2T)p " 2+126

G+G,CAR

+RSWITCHp O

G+0p0+G

Progrom 1 Graph plotting (GRAPH).

270 APPENDIX A

VDFTILU]V
V Z«W DFT X;D;E;F;G H ;T3d K30 Y

1] D+' 0123456789, *

[2) +(V/Wzl W+ W+ (H«0)xL+1<ppX) /DFTERR+QxF+2

[3) +(3 2 1 <ppX)/(DFTERR+F+0), 2 3 +I26

[u] +(pppX+((v/ 1 2 =pW)d 1 2)Q(1,p,X)pX)/2+126

{5] X«(0 1 1 /pX)pX

{6] +{((Af(pW)= 1 2 ,2xE«1p¢pX),1%2pW)/(DFTERR*xF+1),3+1I
26

[7] I«1+[/0,,L10@8]|X+1>|X

[8] We(2+T+W+(W20)+Vv/ ,X<0) ,W

[9] +(v/2>=-/[1]) W«Q(E,2)pW)/DFTERR+OxF+2

[10] Z+((K+«1ppX),+/W[1:1)p" !

{11])] X«J-1]|J+0.5+Xx10%x(pX)pW(2;]

{12) DFTLP:+(E</i+H+1)/DFTEND

[13] J+1+410]|J=1]J«()Y+XL;H])o . 310%x 1+P 1\ J«W[1;H]

(18] J«(,J)xC+,Q(dpd)p(,Q(Jx1)Vv . A{(1I)o 1 T-F+1),(Kx1+F«W[
2;H))p1

[15] +(A/0<Y)/2+1I26

{16] JU(I-+/(K,I)pG)+Ix 1+41K]+12xY<0

[17] J«(X,I)pd

[18] +(0=F)/3+1I26

[19] J+JL;(101G),(C+-/WE;H1])+\F]

[20] JL[:Gl+11

[21] +DFTLPxppp2l ;(+/Wl1;\ii-13)+113+«D[1+J]

[22] DFTEND:+L/0O

[23] +0xpZ+,2

[24) DFTERR:'DFT ' ,(3 6 p' RANK LENGTHDOMAIN')[F+1;1,' PROBLEM.'

v

Program 1. (Continued)*

space is equal to SDATA[}x10xSDATA[2] and the left edge starts
atSDATA[3].

Dcl‘/’Tpu_nnn|rn|c thar
wr s8N 11 WULILI VIO LLIIv L

1]
w
£

._.’
e

-

<o

7

-1

o

—

=

=

=

o
e
o

=

&
—

=

o

literal vector; i
computed.
TITLE—printed above the graph. T/TLE may contain carriage returns.
ATITLE —abscissa title.
OTITLE— ordinate title.
SYMBOLS—symbols used to plot the functions. They are assigned to the
rows of data in order.
CLIP—specifies upper and lower clipping levels for ordinate values. Data out-
side the range are ignored and data inside are scaled 1o fill the graph.
LEGEND —a legend printed at the bottom of the graph If LEGEND is null, no
legend is printed Otherwise, LEGEND is printed as a legend title

Application | plots a series of points, a straight line, and a step function against
a coordinate axis.

*A. D Falkoff of IBM is credited with being the originator of DFT, which is used as
a subprogram by GRAPH. It s listed here with his permission

APL PROGRAMS 271

X+120

Y«120

Z2«(.5xX)+6

We1 111 33 3 3555577779948

GRAPH 4 20pX,Y,Z,W

GRAPH

0
1,00
2.00
3.00
4,00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12,00
13.00
14,00
15.00
16.00
17.00
18.00
19.00
20.00

\ ORDINATE
. 5.0 10,0 15.0 20.0

By~ OO0 e
+ ++ 0
(o]
+ + + +
+ + + +
[}
»
»
(e
»

+ + + +
»
O

—— i — — — — —— ———— — — — — — —— — — —

+ + + +

LEGEND

» O

Application 1. GRAPH.

A.2 STATISTICS*

Descriptive Statistics

Program 2 lists DSTAT, a function which computes, prints, and labels the
following statistics for a vector of ungrouped data: sample size, maximum value,
minimum value, range, mean, variance, standard deviation, mean deviation,
median, and mode. If all values are distinct, no mode is listed. The syntax of
DSTAT is.

T aT Vv
I I A

*Siatistical programs are reprinted with permission from Smillie, K W, STATPACA2
An APL Statistical Pachage (24)

272 APPENDIX A

vDSTATCO)V

V DSTAT X;RiMAX;MIN;N;MEAN;VAR;SD;MD;MED;MODE;V;:M
(1] R+(MAX«X[pX])-MIN+(X+X[4X])(1]
(2] SD+(VAR+(+/(X-MEAN+(+/X)*N)*2)+(N+pX)-1)*0.,5
(3] MD+(+/|X-MEAN)+N
(4] MED«0,5x+/X[(IN+2),1+LN+2]
(5] +(N>pMODE+((o V)p(\M)S1) /VeXL (VM / Vet /X0, =X)/10X]) /7
(6] MODE+10

{71 ('SAMPLE SIZ2E teN)
(8] ("MAXIMUM Ve MAX)
(93] ("MINIMUM tiMIN)
[10] ('RANGE 'sR)
(11]) ('MEAN t MEAN)
(12]) ('VARIANCE *sVAR)
{13] ('STANDARD DEVIATION ';5D)
[14) (*MEAN DEVIATION tsMD)
{15) ('MEDIAN tsMED)
{16] ('MODE ' s MODE)
v

Program 2. Descriptive Statistics (DSTAT).

where X is a vector DSTAT is applied to some sample data values in
Application 2

Program 3 lists MVSD, a function which computes the means, variances, and
standard deviations for a matrix of variates and observations. The syntax of

DATA«1 3 5 6 7 7 8 9 11 13

DSTAT DATA
SAMPLE SIZE 10
MAXIMUM 13
MINIMUM 1
RANGE 12
MEAN 7
VARIANCE 12,66666667
STANDARD DEVIATION 3,559026084
MEAN DEVIATION 2.6
MEDIAN 7
MODE 7

DSTAT 1 3 56 7 76 5 31
SAMPLE SIZE 10
MAXIMUM 7
MINIMUM 1
RANGE 6
MEAN 4.4
VARIANCE 5.155555556
STANDARD DEVIATION 2.27058u4849
MEAN DEVIATION 1.92
MEDIAN 5
MODE 1 3 5 6 7

Application 2, DSTAT,

APL PROGRAMS 273

vMVsSDLO]V
Y T+«MVSD X:N:M; VAR SD
£1] SD+(VAR«(+/01)(X-(pX)pM«(+/(1] X)tN)*»2)+(N+(pX)[1])-1)~
0.5
[21 T+Q(3,pM,10)pM, VAR ,SD

Program 3. Mean, Variance, and Standard Deviation (MVSD).
MVSDis:
T« MVSD X

where T is an explicit result and X is a matrix. The rows of X correspond to
observations and the columns of X correspond to variates An example of MVSD
is given in Application 3.

DATA+1 3 5 6 7 7 8 9 11 13
MVSD DATA
7 12.66666667 3.55902608¢4

MVSD 1 3 56 7 76 5 31

L.y 5.155555556 2.270584849
MVSD 110
5.5 9.1666666067 3.027650354

Application 3. MVSD,

The

3 g
-1
o
1 =]
N

-
..:3
F-N
m
—
w
:
My
4
l-i
n
—
=
pen |
[@]
=
o
=)
€
='
(')
-
=
o)
=]
w
0
-
w
—
=)
[1,=]
-
n
=
o
=3
e
(4]
£
=
[q-]
=
.
(9]
U')

G<W HIST F

where G 1s an explicit result and F is a vector of frequencies. Each component
of Fis divided by W and rounded before plotting. Application 4 plots a simple
histogram.

VHIST[O)V
Y G+W HIST Fi;MAX;K

(1] MAX«[/F«|0.5¢+F%W

(2] G+('. "), ([/K+(F2MAX)/\pF)p"* '
£3) GLk+1])+'T!

[u] G

(5] +(Q<MAX+MAX-1)/2

[s] (1+pF)p'."!

[7] G+ 0

v
Program 4. Histogram Plotting (HIST).

274 APPENDIX A

DATA«1 4 8 13 10 8 12 17 24 30 31 20 24 21 15 9 6 4 2 1 1
1 HIST DATA

. T

. TT

. TT

. TT

. TT

. TT

. TT

. TTT T

. TTT T

. TTT T

. TTT TT
. TTTTTT
. TTTTTT
. TTTTTT
. TTTTTTT
. TTTTTTT
. TTTTTTTT
. TTTTTTTT
. T TYTTTTTT
. T TTTTTTTTT
. T TTTTTTTTT
. TT TTTTTTTTT
. TT TTTTTITTITTT

. TTTTTTTTTTITTTT

. TTTTTTTTTTTTTT

. TTTTTTTTTTTITTTT

. TTTTTTTTITTTTTTT

« TTTTTTTTTTTITTTTTT
« TTTITTTTTITTITTITITTIT
e TTTTTTTITTTITTITTITITTT

LR I N R R N A I IR N R R O B I I)

Application 4 HIST.

Probability and Correlation

Program 5 lists BINOM, a function which calculates a vector of probabilities in ¥
binomial trials with probability P of success in a single trial. The syntax of
BINOM is:

B+« N BINOM P

vBINOM([O]V
V B+«N BINOM P
(1] B«(RIN)x(P*R)x(1-P)*N-R+«0 ,\ N
v

Program 5. Binomial Distribution (BINOM).

APL PROGRAMS 275

2 BINOM .1
0.81 0.18 0.01

2 BINOM .5
0.25 0.5 0.25

2 BINOM .9
0.01 0.18 0.81

5 BINOM .1)
0.59049 0.32805 0.0729 0.0081 0,00045 1E75

S BINOM .9
1E”S 0.00045 0.0081 0.0729 0.32805 0.590u49

GRAPH 20 BINOM .5

GRAPH

\ ORDINATE (x10%x=3)
.0 50.0 100.0 150.0 200.0
1.00 o | | | i
2,00 0
3.00 o
4.00 o
5.00 |
6.00 |
7.00 |
8.00 |
9.00 | o
|
|
|
|
I
|
|
|
o)
(o]
o]
(o]

Bhhhh~NOWL e

10.00
11.00
12.00
13.00
14,00
15.00
16.00
17.00
18.00
19.00
20,00

21.00 | I | |

Application 5. BINOM.

where the scalars ¥ and P satisfy the following conditions:

N>0and(l | N)=0
0<P<I

and Bis an explicit result. BINOM is applied to sample values in Application 5.
Program 6 lists POISSON, a function which calculates a vector of the first N+ i
probabilities for a Poisson distribution with parameter K. The syntax of

276 APPENDIX A

VPOISSON(O]vV
V P+«N POISSON X
(1] Pe(2=-K)x(K»xX)+!X+0 N
v

Program 6. Poisson Distribution (POISSON),

POISSON is; P< N POISSON K

where P is an explicit vector result and N and K are scailars greater than zero.
K is interpreted as rx p, where r is the number of items in the sampie and p is the
probabiiity of success. Anexample of POISSON is given in Application 6.

2 POISSON .1
0.904837418 0.0904837418 0,00452418709

2 POISSON .5
0.6065306597 0.303265329% 0.07581633246

2 POISSON .9
0.4065696597 0.3659126938 0.1646607122

5 POISSON 4
0.01831563889 0,07326255555 0.1465251111 0.19536681u48
0.1953668148 0,1562934519

GRAPH 20 POISSON 9
GRAPH

\ ORDINATE (x10%-3)
. 50.0 100.0 150.0
I I I

BNl
L2,
(=]
(=]

I I I
Application 6. POISSON.

APL PROGRAMS 277

veMiOlv
V R«CM XV
(1] Re«R¥(Vo.xV+(1 1)QR+(QR)+.%xR+X-(pX)p(+/[1] X)#(pX)[1]))=*
0.5

v
Program 7. Coefficient of Correlation (CM).

Program 7 lists CM, a function which computes a matrix of correlation co-
efficients from a matrix whose rows correspond to observations and whose
columns correspond to variates. The syntax of CM is:

Re«CM X

where X is a matrix and R is an explicit result. If (p X)=(m,n), then (pR)=(n,n).
CM is applied in Appiication 7

DATA+20 200
DATA[1)+ 20
DATA(;2]+20720
CM DATA

1 T0,1233082707
0.1233082707 1

GRAPH DATA(;2]
GRAPH
ORDINATE

5.0 10.0 15.0 20.0
o I I l |

* -

0
1.00 |
2.00 |
3.00 |
4,00 |
5.00 |
6.00 |
7.00 |
8.00 |
9,00 | o
|
|
I
|
I
I
|
I
|
|
|

By O

10,00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00

20.00 I | o | |

Application 7. CM.

278 APPENDIX A

vSRLO]V
V T+«X SR Y;N;MX;SX;MY;SY;B1;BO;R;RSQ;TV:SE;A:B

(1] SXe((Av+/(X=-MX+(+/X)tN)*2)+(N«(pX))-1)2

0.5
[2] SY«((Bet/(Y=-MY<(+/Y)tN)x2)4N=-1)%0 .5
(3] BO+MY-MXxBle(+/(X-MX)x(Y-MY))tA
[u] SE«((Bx1-RSQ+(R«B1xSX+SY)%x2)4+N=~2)*0,5
(5] TV+B1+SB1+(SY+SX)+((N=-2)4(1-RSQ))*»0,5
(6] T«(5 3)pMX,SX,0,MY,SY,0,B0, O 0 ,B1,5B1,TV,SE,R,RSQ

Program 8. Regression (SR)

Regression

Program 8 lists SR, a simple regression function applied to operands X (inde-
pendent variable) and Y (dependent variable). The syntax of SR is'

T<X SR Y

where T is a matrix of five rows and three columns containing the results of fitting
the straight line ¥Y=4 +8x X by the method of least squares. T is interpreted as
follows

Row | mean of X; standard deviationof X, 0

Row 2. mean of Y; standard deviationof ;0

Row 3 4:0:0

Row 4 B;standard error of B, T-value

Row 5. standard error estimate; R =simple correlation coeflicient; R#2

X and Y are vectors such that (pX)=(pY). SR is applied to sample data in
Application 8.

Analysis of Variance

Program 9, ANOV A, does an analysis of variance on a complete factorial design
with arbitrary numbers of replications and factors. The syntax of ANOV A is.

T« ANOVA D

where the explicit resuit 7 is a matrix with four columns giving: identification,
degrees of freedom, sums of squares, and mean squares; and whose rows represent:
replications, main effects and interactions, error, and total. The first coordinate
of D represents replications. The other coordinates of D represent factors.
Application 9 applies ANOV A 1o some sample data.*

Critical Path

Program 10, CPM1, is a set of functions for performing a critical path analysis of
an activity network The program interacts with the user to obtain the necessary

swialiae LE 2w) M8l 1w Es

*For a complete analysis and inlerprelation of this problem, see P G. Hoel, Introduction
10 Maithemaiical Siatistics (2nd edition), New York, John Wiley & Sons, Inc, 1954, p 254

APL PROGRAMS 279

X+«120
Ye1,5+,75xX

X SR Y

1.050000000£1 5.916079783E0 0.000000000FE0
9.375000000E0 4.437059837E0 0.000000000F0
1.500000000FE0 0.000000000F0 0.000000000F0
7.500000000E 1 1.862645149E" 9 4.0265318u40F8
4.803313672E" 8 1.000000000F0 1.000000000EF0

Y«3 4 15 7 948 11 9 8 13 16 17 13 14 18 16 19 290
Z+X SR Y
Z

10.5 5.916079783 0

10.75 5.784507439 0
1.110526316 0 0
0.9180451128 0.07930538021 11.57607459
2.045095198 0.9389266396 0.88158323u45

WeZ[3:1)+2Cu;1)xX
GRAPH 3 20pX,Y,.W
GRAPH

\ ORDINATE

0. 5.0 10.0 15.0 20.0
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

0
I
|
I
|
I
I
|
I
|
10.00 | o %
|
|
|
|
I
|
|
|
|
|

NGOy s
o]
»*

11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00

LEGEND

O

Application B. SR.

280 APPENDIX A

VANOVALOLvV
V T«ANOVA D;DIM;N;REPS;K;R;CT;V;I;:S

(1] N«(pDIM+pD)-1

(2] T+« ((Re(2*N)+2xK+(REPS«DIM(1])22),4)p0

(3] CT«((N+1)p0) S5 D

4l T(R; 2 3)«((x/DIM)~-1),((N+1)p1) SS D

(5] +(REPS=1)/17

(6] TC1; 2 3)«(REPS-1),{((1(N+1))s1) S8 D

(71 D«+/[1] D

(sl DIM«1+DIM

(9] Vel((22(N+1)=1N)o, |1 S)+(2%*N=1N)o,x(S«(22N)-1)p1

[10] VL1 (2eN)=1]«VLi(+/(Xo.>X)+((1pX)o,21pX)AXo, =X)1 1pX++/[1]

V]

(11] Il

[12) 2CI+k; 2 3)e(x/((V(:I]=1)/DIM-1)),(V[;I] SS D)+REPS

[13) +((2=N)>I«I+1)/12

(14)] 7T(:;3]eT(3;3]-CT

(15])] =»(N=1)/20

[16] I<2

[17] DV« (XpO) (X (~(~CTIV.AS)A(CT«V[;I])V.AS+V[31 I-1]) ,(R-(I+X-

1))p0

(18] T(I+X;3)«T(I+X33]-+/T[;3]1xDV

[19] +((2=N)>I«I+1)/17

[20] <+(REPS=1)/23

[21)] T(R-1;2]«2(R;2)-+/01] TC\(R-2);2]
[(22] T(R-1:;3])«T[R:3]-+/[1] T(1(R=-2);3]
(23] TL W (R-1);u4)«T[(1(R-1);31+T(1(R-1);2]
[(24] I+

[25] T(I+XK31l«104V(;:I]

[26] =+((2#N)>I«I+1)/25

[an N anNanlanNan N an N o |
NV E WD

vss(Olv
V S+«Y SS R;DIM;K;ZEROS;ONES
+(K=ONES+«K-pZEROS+(Y=0) /1 K«pDIM+pR) /u
Re+/[(10)pZEROS[p ZEROS]] R
+(0=pZEROS+ 1+2ER0OS)/2
R+R»2
R++/R
+{0<ONES+ONES-1)/5
S+«R+x/(Y=0)/DIM

e e e el e) D

Program 9. Analysis of Variance (ANOVA).

input consisting of: node number, node duration, and successor nodes. If there are
n nodes, then they should be numbered | through n. Output includes:

iength of the critical path
critical activities

node numbers

durations

early start and early finish times

APL PROGRAMS 281

late start and late finish times
total and free slack

CPM)] is applied to a sample network™® in Application 10,

A.3 MATHEMATICS
Matrix Algebra

Program || and 12 list functions for computing the inverse and determinant of
a matrix, respectively. The syntax of the functions are-

R<«INV X
R« DET X

INV uses the Gauss-Jordon method with pivoting. Examples of INV and DET
are given in Applications |1 and 2.

Curve Fitting

Program 13 lists PCF,¥ a function which fits a polynomial to a set of data points.
The syntax of PCF is:

R<N PCF X

where R is a vector of polynomiai coefficients in descending order, N is the degree
of the polynomial; and X is a 2x K matrix of K data points. The first row of X
represents the independent variable and the second row represents the dependent
variable. PCF is applied to sample data in Application [3.

PLOT1+310 353 366 299 367
PLOT2+284 293 335 264 314
PLOT3+307 306 339 311 377
PLOTu+267 308 312 266 342
DATA+4 SpPLOT1,PLOT2 ,PLOT3,PLOTH

ANOVA DATA
0 3 6430
2143,333333
1 4 12712
3178
0 12 2388
199
0 19 21530
0

Application 9. ANOVA,

*For a4 complete analysis and interpretation of this network see P G. Carlson, Quanti-
tative Methods for Managers, New York, Harper and Row, Publishers, 1967, p. 99.

¥The PCF program is listed with permission from W R Newman, APL-MANHATTAN,
a division of Industrial Computer Systems, Inc.

282 APPENDIX A

verM1(0dv
v CPM1
(1] INPUT
(2] NETWORKCHECK
(3l +ERRORREPORT
C(u] TOPOLOGICALSORT
(51 CPMALGORITHM
(6] PREQUTPUTSORT
(7] oUTPUT
v
VBASICDATALQO])V
V BASICDATA;V
(1] 'IS THIS A NEW PROBLEM?'®
(2] +(A/'N0'=(M(12])/0
(3] 'ENTER PROBLEM NUMBER'
(4] PROBNO+(]
(5] *ENTER NODE NUMBER ,DURATION AND SUCCESSOR NODES,ONE NODE A
T A
(61 *TIME IN ANY NODE ORDER.AFTER ALL DATA HAVE BEEN ENTERED,E
NTER!
(7] 'A NODE NUMBER OF o0.,°
(8] DATA+0
(9] +-((Ve+,0)[1]1=0) /11
(10] +9,pDATA«DATA,V,(10-pV)p0
[11] DATA«(0=+/[1] DATA)/DATA+(((pDATA)+10),10)pDATA

VCONSISTENCY(LO]V
V CONSISTENCY;I:J
(1] I«Np1l
(2] +((A/I=d)VA/~Je(Vv/I/PM)AV/[1] I/(1] PM)/u
(al] +2,pI«J
Cu] ERROR<«ERROR,V/Jd
(5] LooPS+J /NODES

«

VCPMALGORITHNMCO]V
Vv CPMALGORITHM
(1] EARLYSTART
(2] EARLYFINISH
(3] LATEFINISH
(4] LATESTART
[(s] TOTALSLACK
(6] CRITICALPATH
(7] FREESLACK

VCRITICALPATHE(O]v
V CRITICALPATH
1] CRPATH«(TS=0)/NODES

Program 10. Critical Path Method (CPM1).

(1]

(1]

(7]
(8]
(9]

APL PROGRAMS 283

VDURATIONVECTOR(O]V
Vv DURATIONVECTOR
DURATIONS«DATA(DATAL ;1)\NODES; 2]

VEARLYFINISHC(OIvV
V EARLYFINISH
EF«ES+DURATIONS

VEARLYSTART(O]V
V EARLYSTART;J
ES+1p0
+(N>pES«ES ,[/JES(J)+DURATIONS(J+(,PM[;1+pES])=1)/1K1)/
2

VERRORREPORT((O1v
V EXIT«ERRORREPORT
EXIT«(V/ERROR)/0
+(~v/ERROR) /0
('PROBLEM NUMBER ' ;PROBNQO;' DATE '3;3125:0«" ';(0«"
ERROR1:+(~ERROR[1))/ERROR2
(*NODES NOT NUMBERED CORRECTLY';0«' ')
NODES[4NODES]
ERROR2:+(~ERROR(2]))/ERROR3
(*INCORRECT NUMBER OF INITIAL NODES';[«' ')
INODES

(10] ERROR3:+(~ERROR(3])/ERRORY

[11]
(12]

('INCORRECT NUMBER OF TERMINAL NODES';[(«' ')
TNODES

(13] ERRORu4:+(~ERROR(41)/0

(1]
[15]

(1]
(2]

(3]

('*INCONSISTENT PRECEDENCE MATRIX';(}+' ')
LOOPS
v

VFREESLACKLO]v
v FREESLACK;I
FS+10
+((N-1)>pFS«FS,L/ESC(,PM(T;])=1)/\N]-EF[I+1+4pFS])/
2
FS+FS,0
v
Program 10 (Continued)

")

284 APPENDIX A

VINITIALNODES[QO])V
V INITIALNODES
(1) ERROR+ERROR,1=2p INODES«(0=v /(1] PM)/NODES

vVINPUT(OIV
v INPUT
(1] BASICDATA
(2] NODEVECTOR
(3] NUMBEROFNODES
(4] DURATIONVECTOR
(s) PRECEDENCEMATRIX

VLATEFINISH(O]V
Vv LATEFINISH;I
(1) LP<«1pEFLN]
(2] +(§>pLF+(L/LF[I+(pLF)-N]-DURATIONs[I+(.PM[N-pLF;]:i)/\N]).
LF)/2

VLATESTART(QO]v
V LATESTART
(1] LS+~LF-DURATIONS

VNETWORKCHECK([O]vV
V NETWORKCHECK
(1] ERROR+\0
(2] NODENUMBERING
(3] INITIALNODES
(4] TERMINALNODES
(5] CONSISTENCY

VNODENUMBERINGLO]V
V NODENUMBERING
(1] ERROR<+ERROR ,~A/v/(\N)e . 3NODES

VNODEVECTOR(LO]V
Vv NODEVECTOR
(1] NODES+(DATAL31])(4DATAL;1]]

YNUMBEROFNODES((0O]V
Vv NUMBEROFNODES
(1] N«(/NODES

Program 10 (Continved)

APL PROGRAMS 285

vouTPUTLO]V

v OUTPUT
(1] ('"PROBLEM NUMBER ' ;PROBNO;' DATE ‘';x25;0«" *;0+"' ')
(2] ('LENGTH OF CRITICAL PATH: ';+/DURATIONS(CRPATH]);O«"' ')
[3) ('CRITICAL ACTIVITIES: ‘';CRPATH;O+"' ')
(4] (*'NODES: "0« ')
(5] NODES
(s] ("DURATIONS:';0«"' ')
(7] DURATIONS
f8] (*EARLY START TIMES:';0«' ')

gal ES

£10] (°*EARLY FINISH TIMES:':0«' ')
£11] EF

[12) ('LATE START TIMES:';0«' ')
£13) LS

f14) ('LATE FINISH TIMES:';O«' ')
[15] LF

£16] ('TOTAL SLACK:';0«' ')

£17] TS

(18] ('FREE SLACK:':0+' ')

£19] Fs

VPRECEDENCEMATRIX[O]V

V PRECEDENCEMATRIX I ;ROW;COLS;V
1] PM«(N ,N)pO
[2) I«
£3) ROW+«DATA[I ;1]
(4] COLS«(V>0)/V+DATA[I;2+1 24(pDATA)([2]]
(s] PM[ROW;COLS)+1
[s]) +(N2I«I+1)/3

VPREOUTPUTSORTLUIV

V PREOUTPUTSORT;I
1] PM«PM(I;I+NODEORDER\\N]
2] DURATIONS«DURATIONS[I]
[3] ES<+ES[I]
[(4) EF<EF(I]
(sl LF«LF[I])
(6] LS«LSLI]
€71 rS«Ts(I)
(8] CRPATH+I\CRPATH
ol PS«FS(I]

VTERMINALNODESL(O]V
V TERMINALNODES
(1] ERROR+ERROR ,12pTNODES+(0=v/PM) /NODES

<]

Program 10 {Continued)

286 APPENDIX A

VITOPOLOGICALSORT(O)V
V TOPOLOGICALSORT;V;I

1) NODEORDER+\ 0
t2] Veipl
(3] VII«(V\~v/(1] Vv/V/[1] PM)r\1]+0
fu] +(N>pNODEORDER+NODEORDER ,I)/3
(5] PM<PM[NODEORDER ;NODEORDER)
(6] DYRATIONS«DURATIONSINODEOCRDER]

v

VTOTALSLACK(O]vV

Vv TOTALSLACK
(1] TS<«LS-ES

Program 10 (Continved)

CPM1
IS THIS A NEW PROBLEM?
YES
ENTER PROBLEM NUMBER

d:
10

ENTER NODE NUMBER,DURATION AND SUCCESSOR NODES,ONE NODE AT A
TIME IN ANY NODE ORDER.AFTER ALL DATA HAVE BEEN ENTERED,ENTER
A NODE NUMBER OF 0.

O:

1 5 2
B

2 6 3 4 5
0:

3 10 9
0:

4 5 6 7
s

5 19 11
(J:

6 2 8
0:

7 1 8
0:

8 2 9
0:

9 2 10
0:

10 3 11
u:

11 1 12
0:

12 2
3:

Applicotion 10. CPM1.

APL PROGRAMS

0
PROBLEM NUMBER 10 DATE 13070
LENGTH OF CRITICAL PATH: 33
CRITICAL ACTIVITIES: 1 2 5 11 12

NODES :
1 2 3 &% 5 6 7 8 9 10 11 12

DURATIONS :
5 6 10 5 19 2 1 2 2 3 1 2

EARLY START TIMES:
0O 5 11 11 11 16 16 18 21 23 30 31

EARLY FINISH TIMES:
S 11 21 16 30 18 17 20 23 26 31 33

LATE START TIMES:
0 5 15 16 11 21 22 23 25 27 30 31

LATE FINISH TIMES:
s 11 25 21 30 23 23 25 27 30 31 33

TOTAL SLACK:
0 0 4 5 ¢ 5 & S 4 4 0 O

FREE SLACK:
o o 0 ¢ O O 1 1 0 ¥ 0 O

Application 10. (Continued)

vINV(O])v

V RB«INV RA;RK;RSRP}
(1] +((2=ppRA)A=/1,pR4A)
£2] 'NO INVERSE!'
£3] +~RBe1
Cw] RX+L/pRA
[(s] RS+RK
6] RP«\RK
£7) RA<RA[;(\RS),1]
(81 RAL;1+RS)+«(1\RS)s1
(9) RI«(IRAC\RK;11)2[/IRAL\RK;1])
£10] RPL1,RI)<«RPERI,1]
11) RA[1,RI;\RS)«RALRI,1;\RS]
(12) +(1E 30>|RA[1;1))p2
£13] PRAC1;)<«RAC1:]+RA[1;1)]
(14) RA«RA-((~(1RS)<1)xRAL:1])e.xRA[1;]
£15] RA+«RA[1+RS|\RS;(1+41RS),1])

Faes9 PO _DPDRlfa . Dol _pan
fareprLivno | vne)

Li8]
(17) +(0<RK+RK-1)/8
[18) RB«RAL;RP1\RS]

Program 11. Matrix Inverse (INV).

287

288 APPENDIX A

A+h 4p3 2 1 "1 T3 "1 21617 739 1722

B+3 2 2 5
AINV<INV A

X+AINV+ . .xB
X

0.33333 2 1 3
Al1;]+.xX

3

Al2;]+.xX
2

Al3;J+.xX
2

AC43]+.xX
)

Applicotion 11. INV,

Calculus Programs*

Program 14 lists the function INTEGRAL], which computes the area under a
curve by trapezoidal integration or by Simpson’s rule. The syntax of INTEGRAL|
Is:

R<INTEGRAL] X

where X is a matrix whose first row gives values of the independent variable and
whose subsequent rows give values of the dependent variables. The result R gives
an area for each curve represented. If an odd number of points is given, Simpson’s

VDET(O]V
V C«DET 2;J:Q
£1] +(12zp,2)p0,C+,2
(2] +L2x\(2=2pp2)A=/pl
£3] +0,00«'ILLEGAL STRUCTURE'
(4] L2:+0xyv(14pZ)<d«(Z[13])=0)1C+,0
€(s] Z«(J-1)¢2
(6] L6:2+2-2(;1])e.x2[1;]#¢C+2[1;1]
) C+(" 10J-1)xCxDET 1 1 +2
)

Program 12. Determinant of Motrix (DET).

*The programs INTEGRAL2 and MAX, as well as the utility functions, are listed with
permission from E. M. Edwards, Department of Electrical Engineering, University of
Alberta

APL PROGRAMS 289

A«2 2p1 3 2 &4

A
1 3
2 4
_ DET A
2
B«3 3p1 1 112 3149
B
1 1 1
1T 2 3
1 4% 9
DET B
2
C+4% 4p2 4 6 8 31 2 112 7222 341
C
2 4 6 8
3 1 2 1
1T 2 T2 2
2 3 &% 1
_ DET ¢
228

Application 12. DET.

rule is used. If an even number is given, trapezoidal integration is used for the last
interval and Simpson‘s rule is used for the remainder. Application 14 uses
INTEGRALI to find the area under three standard deviations of the normal curve.

Program 15 lists MA X, a function which locates the maximum of a defined func-
tion over a specified interval. The function uses a monadic APL function named
FCN, which returns a vector result from a vector operand. FCN is a definition of

the curve under study by the user, The syntax of MAX is:
XM« MAX I

vVPCFC(Q)V
V ReN PCF X;A
(1] Re(INV(QA)+.xA)+ . xX[2}3]¢.xA«X[1;] e, w0, N+0(L
0.5+1pNL 1+(pX)(2]

£2) X(2;)+X(2;)-~A¢.xR

(3] A+r0

4] DEV+({{+/X(2;]w2)¢(px)(2])%0.5) b, R(1XT23])=T/1X(
2;1)/x

Program 13. Polynomial Curve Fit (PCF).

290 APPENDIX A

X+110
Y« (3xX)+2
1 PCF 2 10pX,Y

Yo ((5xX*2)-(10xX))+7
2 PCF 2 10pX,Y
5 "10 7

X+«120
Y«?20p20

GRAPI Y
GRAPH

\ ORDINATE
.0 5,0 10,0 15.0 20.0
1.00 | I o I i I
2,00 |
3,00 |
4,00 |
5.00 |
6.00 |
7.00 |
8,00 |
9,00 | o
I
|
I
!
I
I
I
I
!
I
I

BN Wo s

106.00
11.00
12,00
13.00
14,00
15,00
16.00
17,00
18.00
19.00
20.00

LEGEND

C+u4 PCF 2 20pX,Y
c

T5.47480798E°5 ~0,007272677985 0.2427199075 ~1.934862398
14.1002322

APL PROGRAMS 291

Ze(Cl1)xXe)+(CL2)xX%x3)+(CL3)xXxx2)+(C{u)xX)+C[5]
GRAPH 3 20pX,Y,2

GRAPH

\ ORDINATE

0. 5.0 10.0 15.0 20.0
1,00
2,00
3.00
.00
5.00
6.00
7.00
8.00

0

I i o I * | I
I
I
J
I
I
I
I

9,00 | o *

I
I
I
|
I
I
|
I
I
I
I

it~ 0o

10.00
11.00
12.00
13.00
14.00
15,00
16.00
17,00
18.00
19.00
20.00

LEGEND

Application 13. (Continued)

where /[1] is the lower bound, /(2] is the upper bound, and /[3] is lhe tolerance

yvaliia nicad ag _ 2. | Fri1_ M IF(-IV_T tha an H"I‘I=1 -4 e on mneliad
Valu\i uswu ad -r Ul. ‘lJJA 1 ‘l |J "lLJ 11 \Pl’ ey l-ll.;ll. all llJJ | B) vl DuPPll‘vu

XM is the abscissa value for the maximum point The minimum value may be
computed using —F(X) Application 15 finds the maximum value of the normal
curve with a mean of 10 and a standard deviation of 3,

VINTEGRAL1[(O)V

V R«INTEGRAL1 X:T:0
(1] +3x12=ppX
£2] +0,p0«"REQUIRE MATRIX ARGUMENT'
(3] T+X[(1;1
(4] Xe 1 0 X
£s] +8x1(2<pTIAA/T=H+14T+14T-"1¢T
(6] Re(0 1 #X4¢ 16X)+.xT42
7] +0
&:)] Re(H46)xX+,%x2,((T1-0-pT)p 8 4),(140)p 2 0 +3x0«2]|pT

Program 14. Numerical Integration (INTEGRALT1).

o N Naulau Nan Y auNaulaul o Nan Ko N an X an
R R R OO~ NE WN

292 APPENDIX A

VP+«NORM X
(1] M+10
£2] S+3
(3] Pe(»-((X-M)*2)12x5#2)¢5x(02)*.5
(4] v

GRAPH NORM 119
GRAPH

\ ORDINATE (x10%-3)
. 50.0 100.0 150.0
I I I

0
1.00
2.00
3.00
.00
5.00
6.00
7.00

0
(o}
jo

I

I

I

I

I
8.00 | o

|

|

I

I

I

I

|

I

l

I

(o}

Bt O0ios

9.00
10.00
11,00
12,00
13.00
14,00
15.00
16.00
17.00
18.00
19.00

o)
(]
(o]

INTEGRAL1 2 19p(1v19),NORM19
0.9972894445

Application 14. INTEGRAL.

vMAXEODW

V XM«MAX I;M;D;E;L;X@ II
E«(I,1E6)[2+}AX«1]
+13x112pp PCN II«I«I[1 2]
XQ«II(1]-(=/II)x0,05%0,120
+9x 1124 /LeM=[/M+FCN XQ
II«M+(D+0.05%=/ITI)x 1 ~1 xIIzM<L/XQ
+3x E<D¢-/T
+0x A/ TnXMeM
+0,p0«"'MAXIMUM IS AT AN END POINT'
+12x1v1=~/L01,pL]),pL«L/ oL
‘MULTIPLE MAXIMUM AT ';XQ[L]
+0
+7 Met /XQUL) 4 YAX«p L

1UYNAND DAY NADAS UAM DIV
TdVUUn roeiv Uvoo vVl NG

UEMENT'

W RO e LS)

[SE R W R S)

Program 15. Maximum of a Function (MAX).

APL PROGRAMS

VR+«FCN X
M+10
S+3

~m e

EWN e
| Wy Wy Wy -

v

CURVE+«FCN119
MAXAX+MAX 1 19
MAXAY<«FCN MAXAX

GRAPH 3 19p(119),CURVE,19pMAXAY

GRAPH

\ ORDINATE (x10%-3)

0.0 50.0 100.0 150.0

1,00 o | |
2.00 |o
3.00 |
4,00 |
5.00 |
6.00 |
7.00 |}
8,00 |
9,00 |
10.00 |
11.00 | o
I
I
I
i
I
i
I

Bt~ hhtun

12.00
13.00
14,00
15.00
16.00
17.00
18.00

LEGEND

Application 15. MAX.

Utility Programs

Re(w=a((X-M)%x2)42x5%x2)4S5x(02)*,5

*

® % % % % % % % % O % % % ¥ % % * ¥

293

Program 16 lists four utility functions: DEG converts radians to degreess RAD
converts degrees to radians; RND rounds to N decimal places; and SIG rounds

to N significant figures. The syntax of these functions is:

R<DEG X
R« RAD X
R<N RND X

R< N SIG X

Some simple examples are given as Application 16.

294 APPENDIX A

(1]

[1]

[1]

v

v

YDEGLO]V
R+DEG X
R+57.29577951308232xX

VRAD[((O])v
R+RAD X
R+0.0174532925199433xX

VRNDLO]V

R«N RND X
+ux1A/(N<O),,(2%#31)2X
ReX-N|X«X+0,5xN«10w-N
+0
RelO0.5+NxL0,5+X#N«10w-}§

vSIGLO]V
R+N SIG X
ReX-N|X+X+0,5xN+10%1-N-L10@|X+X=0

Program 16. Utility Programs (DEG, RAD, RND, SIG).

A.4 BUSINESS

Program 17 lists two functions; compound interest (COMPINT) and invest
(INVEST). Compound interest computes the future value of an amount if com-
pounded periodically at a given interest, The syntax of COMPINT is;

V< COMPINT D

DEG 1
57.29577951

DEG o1
180

RAD 180

3.141592654
(RAD 180)=01
5 RND 01
3.14159

S SIG o1
3.1416

Application 16. DEG, RAD, RND, SIG.

APL PROGRAMS 295

9COMPINTIO]V
V V«COMPINT D
[1] V«2 RND D[1)x((1+(D[2]%100)+D[u])*D[3]1xD{u])

VINVESTLO]Y
V V«INVEST D
[1] V2 RND D[1])3((1+(DL2]1%100)+D[u]1)*DL3]1xD[4u])

Program 17. Business (COMPINT, INVEST).

COMPINT 1000 5 10 1
1628.89
COMPINT 1000 S 10 2

1638.62

INVEST 1000 S 10 1
613,91

INVEST 1000 S 10 2
610.27

Application 17, COMPINT, INVEST.

where (pD)=4 and V is a scalar result. D[1] is the amount to be invested; D[2]
is the interest rate in percent, D[3] is the number of years; and D[4] is the number
of times a year that interest is compounded.

INVEST computes the present value that must be invested at a given interest
to be worth a given amount in the future The syntax of INVEST is:

V«INVEST D

where (pD)=4 and Vis a scalar result. D[1]is the future value; D[2] is the interest
rate in percent; D[3] is the number of years; and D[4] is the number of times a year
that interest is compounded

Application 17 applies COMPINT and INVEST to some sample values.

APPEN

\

APL

.

IX B

)

N
-]

~

This appendix contains information pertinent to the implementation of APL on
the IBM System/360 computers (See Falkoff and Iverson’). Additional facts
which are outside of the scope of earlier chapters are also presented here.

B.1 SPECIFICATIONS

Names

Variables, function names, groups, and labels can be of any length up to 77
characters. Workspace names, theoretically, may be of any length but only 11
characters are retained.

Line Width

In a clean workspace, the width of a line of output is set nominally at 120 spaces.
It may be changed with the system command:

YWIDTH n

where n can be from 30 to 130.

Number of Digits

In a clean workspace, the maximum number of digits displayed is set at 10. It may
be changed to | <n< 16 with the digits command, that is

YDIGITS n

297

298 APPENDIX B

Indexing Origin

The indexing origin is set to | in a clean workspace. It can be changed to 0,

P . N 7alki

and back to i, with the JORIGIN command,

System Information

A set of functions denoted by the monadic operator I (formed by overstriking
T with 1) provides information from the APL\360 system. The operand to T
must be a scalar. They are listed as follows:

T19—The time the keyboard has been unlocked during the current session.

T20—The time of day in 60ths of a second.

I2]1—Processor time used since sign-on in 60ths of a second.

T22—Unused storage in the active workspace in bytes. Storage can be esti-
mated using the following equivalences.

I character=1 byte

| integer =2 bytes

1 mixed number =4 bytes
8 logical numbers=1 byte

T 23— The number of users currently signed on,

T24—Time since sign-on in 60ths of a second.

T25—Today’s date as MMDDYY to the base ten,

T26—Current value of the line counter during function execution.
T27—Vector of line numbers in the state indicator.

Sign-On Information

A session begins with a dialog of the form:

}123456: PASSWORD
005 01.02.03 01/01/70 JSMITH
APL \ 360

SAVED 01.01.0 12/31/69

The items are identified as follows.

123456 is the user’s sign-on number.

PASSWORD is the user's password.

005 is the user’s port number.

01.02.03 is the sign-on time in hours, minutes, and seconds.
01/01/70 is today's date.

JSMITH is the user’s identification.

SAVED 01.01.01 12/31/69 is the date and time when the last CONTINUE
workspace was saved.

APL\360 299

Passwords

The user can protect his user’s identification by signing off with a password. It
takes the form

YOFF n

where n is a password containing from one to eight characters. The password
must be used the next time the user signs on, The password may be discontinued
by signing off with the colon but with no password.

B.2 WORKSPACE MANAGEMENT

Libraries

Each user is assigned a private library in which he may save workspaces, The
)LIB command lists the saved workspaces in the user’s private library.
Public libraries are denoted by numbers | through 99. A list of workspaces in

public library » are displayed with the command)LI/B n.

Continue Workspace

Each user is assigned an additional workspace name CONTINUE, It is stored
when the following system commands are entered:

)SAVE CONTINUE
YCONTINUE
YCONTINUE HOLD

or when a line disconnect occurs during execution. The continue workspace may
be saved or loaded, as required.

toading, Soving, ond Dropping Workspaces
A workspace can be saved with the save command.

YSAVE n

where n is a workspace name, and can be subsequently loaded with the same
name, that is,

YLOAD n

The save and load commands may be optionally followed by a key, which provides
another level of protection. A key may be up to eight characters in length For
example:

JSAVE ASPACEJS

JYLOAD ASPACEJS

300 APPENDIX B

A workspace may be dropped from the user’s library with the drop command:
)DROP n

when n is a workspace that has previously been saved.

Groups
Function and variable names may be combined to form a group of names with the
group command:

YGROUP n r...

where nn is a name and r is a list of referents. Groups are used with the copy com-
mand for moving several items from a library to the active workspace.

Copy Command

The copy command is used to copy one item— variabie, function, or group—from
a saved workspace to the active workspace. It has the form:

YCOPY name: key x

where name is the name of the saved workspace, key is the optional key,
and x is the variable, function, or group.

Locked Functions

Functions can be locked during function definition (or editing) by overstriking
the opening or closing del with a tilde, that is,% . A locked function can be copied,
executed, or erased. It cannot be modified or displayed.

B.3 EDITING
Line Editing

During function definition, a single line can be edited by overriding the statement
number with [N 0K], where N is a statement number and K is a position in the
statement. The Nth statement is printed, the paper is moved up one line, and the
carriage stops under the Kth position. Editing proceeds as follows:

|I. To delete a character, type a / beneath it.
2. To insert spaces, type the number of spaces under the character to the right
of where spaces should be inserted.

In the latter case, the line is retyped and the user can enter the characters desired.
When editing lines, a good rule to follow is that a line is entered as it looks on the
page. Editing can be discontinued with the ATTN key.

APL\360 301

Correcting a Line Before It Is Entered

Errors can be corrected before a line is entered by backspacing to the error and

P oy e

then pressing ATTN, INDEX, or LINEFEED. Characters to the right of the carriage

are deleted.

B.4 ERROR REPORTS

Error

CHARACTER
DEPTH
DEFN
DOMAIN

INDEY

LI g Py)

LABEL

LENGTH

RANK

SI DAMAGE

SYMBOL TABLE FULL
SYNTAX

SYSTEM

VALUE

WS FULL

B.5 SYSTEM COMMANDS

Terminal Control

Cause

Illegal overstrike

Limit of nested functions exceeded

I1l-formed function definition or locked function
Function or operation not defined for operand(s)

Attammnt tn calant nAanavictant scamnanant afanrauy
fRLlwlll Pl- LV Swilviwl 1IVIIVALISVWILL \.'UI.IIP\JIIUIIL vl ailil ﬂ!

Illegal use of colon or illegal statement label
Arrays not comformable

Ranks not conformable

Modifying a pendent function

Too many names

Illegal construction

A PL\360 system failure

Undefined variable

Workspace overloaded

Command?

Function

YNUMBER [:KEY]
)JOFF [.LOCK)

YOFF HOLD [:LOCK]
YCONTINUE [:LOCK|

)YCONTINUE HOLD [:LOCK]

Sign-on

End work session

End work session and hold line connection

End work session and save active
workspace

End work session, save workspaces, and

[T I L Y S
nol1a H1ne conneciion

a . .
[tems enclosed in brackets are optional

302 APPENDIX B

Workspace Control

Command

Function

YCLEAR

)LOAD WSID[:KEY)]

)COPY WSID[:KEY] NAME
)COPY WSID[:KEY]
)PCOPY WSID['KEY] NAME
)PCOPY WSID[:KEY)]

JGROUP NAME(S)

Clear workspace

Load saved workspace

Copy referent from saved workspace

Copy all objects (functions, variables)
from saved workspace

Same as COPY but protect objects in
active workspace

Same as COPY but protect objects in
active workspace

Group objects

YERASE NAME

Erase named object

)SAVE WSID [:LOCK]

YORIGIN 1 Set index origin where [=0or 1
YDIGITS 1 Specify significant digits for output;
I<I<16
YWIDTH 1 Set page width; 30<1< 130
yYWSID NAME Change name of active workspace
YWSID Gives name of active workspace
Library Control
Command Function
JSAVE Save active workspaces with name WSID

Save active workspace

)YDROP WSID Drop workspace from library
Inquiry
Command Function
YFNS Lists names of defined functions

YENS LETTER

)WARS
)WARS LETTER
)GRPS

)GRPS LETTER
)JGRP NAME
)SI

\SIV

YWSID

)LIB (NUMBER]
)PORTS
)PORTS CODE

Lists names of defined functions beginning with the
given letter

Lists global variables

Lists global variables beginning with the given letter

Lists names of groups

Lists names of groups beginning with the given letter

Lists members of named group

Lists halted functions

Lists halted functions and local variables

Lists identification of active workspace

Lists workspaces in library

Lists ports in use by user

Lists ports for a designated user

APL\360 303

Communications

Command Function

YMSGN PORT [TEXT] | Send message to designated port

yYMSG PORT [TEXT] Send message to designated port and lock keyboard
JOPRN [TEXT] Send message to APL operator

YOPR ’[TEXT] Send message to APL operator and lock keyboard

APL FUNCTION SYMBOLS

Symbol Monadic Name Dyadic Name
+ Identity Addition
- Negation Subtraction
X Signum Multiplication
+ Reciprocal Division
* Exponential Exponentiation
A And
V Or
~ Not
A Nand
¥ Nor
< Less than
< Less than or equal to
= Equal to
> Greater than or equal to
> Greater than
> Not equal to
r Ceiling Maximum
L Floor Minimum
| Absolute value Residue

305

306 APPENDIX C
Symbol Monadic Name Dyadic Name
0 Pi times Circular functions
® Natural log Common log
! Factorial Combination
? Roll Deal
t Index generator Index of
P Dimension (size) Reshape (restructure)
, Ravel Catenation
€ Membership
+ Take
¥ Drop
¢ Reversal Rotation
Q Monadic transpose Dyadic transpose
A Grade up
¥ Grade down
I Base value
T Representation
\ Compression
/ Expansion

o.f Outer product
/g Inner product
f/ Reduction
[] Indexing (subscripting)
Al Specification
> Branch
I [beam
TA... Trace control
SA... Stop control
0 Quad
] Quote-quad
() Grouping

Y - D> g

Delimits statement labels

Separates subscripts, precedes local variables, and
separates mixed output

Denotes negative constant

Denotes exponent

Delimits function definition

Comment

Delimits literal

Locks function

APL FUNCTIONS 307

CONSTANTS
7=3.141592653589793

e=2.7182818284550451
SEED=16807=725

FUZZ=10E"13

PRIMITIVE OPERATIONS AND MATHEMATICAL FUNCTIONS

Primitive operations and mathematical functions produce a scalar result when
their operands are scalars and produce array results when extended on an element-
by-element basis. If one operand is a scalar, then it is extended to all components
of the other operand. If both operands are arrays, then they must be of the same
size. Some operators are formed from composite symbols. Appendix D describes
how they are formed.

A+B A plus B
+8 B (identity operation)
A-B A minus B
-B Minus B
AxB A times B
x B Signum of B(- 1,0, +1if B<0, B=0, or B>0respectively)
A+B A divided by B
+B Reciprocal of B (i.e., | + B)
A*B A raised to the power B (47)
*B e raised to the power B (e%)
ATB Maximum of 4 and B
re Ceiling of B (smallest integer not exceeded by B)
ALB Minimum of A and B
LB Floor of B (largest integer not exceeding B)
AlB Residue of B modulus 4 (always gives a positive result)
| B Absolute value of B
A<B [s A less than B?
A<B [s A less than or equal to B?
A=8B [s A equal to B?
A>B [s A greater than or equal to B?
A>B Is A greater than B?
A=B [s A not equal to B?
AANB Aand B
AVB AorB
~B Not B
AXNB A nand B—equivalent to ~ (4VB)
AxB A nor B—equivalent to ~ (4AB)
AlB Combinations of B things taken 4 at a time (H
'B B factorial or the gamma function of (B-1)

’B Random selection from the first B positive integers

308 APPENDIX C

A®B
&8

AOB
OB

LOgAB
Ln B (log. B)

Circular functions (e g., sin 8= 10B)
Pitimes B

COMPOSITE FUNCTIONS

Composite functions include reduction, inner product, and outer product; they are
the extensions of the scalar dyadic operations to arrays.

f/B Reduction along the last coordinate of B

f+B Reduction along the first coordinate of 8

f/1)B Reduction along the /th coordinate of B

AfgB Inner product of 4 and B (4 +. x B denotes ordinary
matrix multiplication)

Ao [B Outer product of 4 and B

MIXED FUNCTIONS

Mixed functions extend the primitive operations to arrays in such a manner that
they do not always produce a uniform result. A mixed function always involves
an array—either as an operand or as a result.

tB
AB
pB
ApB
AbB
AoB
Ad[/1B
¢)B
o8
oz
AQB
X8
A,B
,B
At B
AV B

AB
¥

ATBH
ALlLRB
AeB

Generates the first B positive integers (uses the index origin)

Index of the first occurrence of B in A

Size of B

Reshape (restructure) B as determined by A

Rotation of B by 4 along the last coordinate

Rotation of B by A along the first coordinate

Rotation of B by 4 along the /th coordinate

Reversal along the last coordinate of B

Reversal along the first coordinate of B

Reversal along the /th coordinate of B

Transpose (interchange coordinates of B as determined by A)

Monadic transpose (interchange last two coordinates of B)

Concatenation of 4 and B

Ravel of B

Take the first A (or last if 4 is negative) components of B

Drop the first 4 (or last if A is negative) components of B

Grade up of B (permutation of indices that would order B in ascend-
Ing sequence)

Grade down of B (indices that would order B in descending se-
quence)

Representation of scalar B to the base A

Value of the vector B to the base 4

Membership (Is 4 an element of B?)

A’B

A< B
A[B]
U/B
UtB
U/1\B
U\B
UB
U\[1B

APL FUNCTIONS

Select A components of B at random without replacement.

A specified by B (assignment of B to 4)

Select the components of A with indices B
Compress B by U (logical) along the last coordinate
Compress B by U (logical) along the first coordinate
Compress B by U (logical) along the /th coordinate
Expand B by U (logical) along the last coordinate
Expand B by U (logical) along the first coordinate
Expand B by U (logical) along the /th coordinate

309

APPENDIX D
APL ALPHABET

KEYBOARD ARRANGEMENT

HBHREBHAEBHBRRAE:
= HBRARBARNBHRN
(e Je I AL LB

APL KEYBOARD SYMBOLS

Symbol Name Symbol Name
A...Z Letters re Angle beams
0...9 Digits _ Underscore
- Negative sign v Del
< < =2 > Comparison operators A Delta
ANV~ Logical operators o Small circle
+ - X + * Arithmetic operators ' Quote
? Question mark 0 Quad
€ Epsilon () Parentheses
P Rho (] Brackets
+ Up arrow 1 T T beams
¥ Down arrow f Vertical stroke
¢ [ota ; Semicolon
O Circle symbol : Colon
- Branch arrow Period
<« Specification arrow . Comma
n Cap / Solidus
\ Reverse solidus

3

312 APPENDIX D

COMPOSITE SYMBOLS

A composite symbol is formed in APL by striking one key, backspacing, and then
striking the other key, The order in which the keys are struck is not significant.

Composite Symbol Used for Formed with

Combination, factorial
Comment

Grade down

Grade up

T beam

Logarithm

Nand

Nor

Protected function

Dnnta_anad
\{uv‘v \1“““

Reversal, rotation
Transpose

) * b —— o .

o= uL e Heo-< 2~
00 DA< >0 > 1> -

—_—— =

FUNCTION SYMBOLS

The APL function symbols are summarized in Appendix C.

o0 ~1 O ot N —

The APL terminal system approaches the state of the art in computer tech-
nology by combining the concept of time sharing and the power and rele-
vance of Iverson’s language* into a single programming system. APL is
accessed with a remote terminal device, which may use a dataset or an
aconstical coupler to prepare information for transmission over ordinary
telephone lines,

The user instructs the computer in two ways' by system commands and
with APL statements. A system command, such as }ERASE ABC, is used to
have a function performed by the computer which is outside of the scope of
the language. A system command always begins with a right parenthesis.
Two system commands are used to initiate and terminate a work session and
are especially important; they are: YYXXXXXX and)OFF, respectively.
(Here XXXXXXX is an installation-defined account number.) A user in-
dicates the processing that he wants performed by entering a statement,
which is executed immediately or is stored as part of a defined function. A
statement can be either of two types: specification or branching. A specifica-
tion statement is of the form X< EXP where X is a scalar variable, array
variable, or a subscripted array variable and EXP is a mathematical ex-
pression, The value of X is replaced by the value of EXP. Example: T+ 5#2.
If the specification operator < is not the last operation in the statement,
then the result is printed at the terminal. The branch statement, which uses
the operator =, is normally used in defined functions to depart from the
sequential order of execution. The operand to the branch operator > is the

*K. E. lverson, A Programming Language, New Y ork. John Wiley and Sons, Inc., 1962.

313

314

24
25
26
27
28
29
30
3l
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66

Pale]

67
68
69

APPENDIX E

number of a statement. If it is zero or does not exist, then an exit is made
from the function.

Numeric constants are of two forms: decimal and exponential. The deci-
mal form uses the characters0 1234 567809. and ~; a number expressed in
decimal form may be negative and possess integral or fractional parts as re-
quired. Examples ~| 173 45.678 ~.3. The exponential form involves a
power of 10 and uses the character E to indicate a positive or negative ex-
ponent. Examples: 13 E7 ~13.638 E17 25.1E"4. Numeric constants may
not contain embedded spaces. Data may be organized as scalars or arrays
and be named. A scalar has a rank of 0; a vector has a rank of |; a matrix has
arank of 2; etc. A name is a sequence of letters, digits, or the character A.
Moreover, a letter of a name may be underlined for clarity. The first char-
acter of a name must not be a digit; the initial sequences SA and TA and
embedded spaces are not permitted. Sample names are / AB12 XPRIME
ALLADONE. A variable associates a name and a value in an active work-
space, which may be saved and loaded by the user. A workspace contains
variables, functions, and control information for a terminal session.

The ordinary dyadic arithmetic operators are: addition (+). subtraction
(—), Multiplication (x), division (+), and exponentiation (*). The monadic
counterparts of the above operators are: — for negation so that —B=0-8;
+ for identity so that + B=0+ B; x for the signum function so that xB= -1,
0, or +1if B<0, B=0 or B>0 respectively; + for reciprocal so that +B=
| + B; and * for exponential so that *B=¢”? where e=2.718281828459045.
Other primitive arithmetic operators are a part of the language and are mo-
nadic or dyadic as indicated. For all operations, operands may be constants,
variables, or expressions. Maximum, ArB, selects the algebraic largest of
its operands: 5=3r5. Minimum, AL B, selects the algebraic smallest of its
operands: 3=3L5. Floor, LA, gives the largest integer not exceeding the
operand: 3=L3.14. Ceiling, 4, gives the smallest integer not exceeded by the
operand: 4=3.14. Absolute value, | A, produces the magnitude of the
operand: 5= | 5. Residue, 4 | B, provides the remainder after dividing B
by 4 and is always positive: 1 =37, 1.6=5| ~13.4. Comparison operations
assume their normal meaning and use the following symbols: less than (<),
less than or equal to (<), equal to (=), greater than or equal to (>), greater
than (>), and not equal to (). How close is equal is of importance, and a
tolerance of approximately 1.0E7 13 is used and is termed fuzz. Fuzz is used
with all of the comparison operations, which produce the result | for true
and O for false. Thus, the result of a comparison operation can be used in an
arithmetic or logical expression. The APL language contains five primitive
connectives whose domain and range is the set {0,1}. And, UAV, returns the
value 1 if both operands are 1. Or, U VV, returns the value 1 if either or both
of the operands is 1. Not, ~U, returns the value 0 if its operand is | and
returns | if its operand is 0. Nand, UAV, returns the value ¢ if both operands
are 0 and returns | otherwise. Nor, U¥V, returns the value | if both
operands are 0 and returns a 0 otherwise.

Several basic mathematical functions are also included in the language.

70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85

86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

PROSE GLOSSARY OF APL 315

The generalized combination, X!V, gives the number of combinations of N

things taken K at a time: 3=2!3. Factorial, !N, gives the number of distinct
arrangements of N things: 24=1!4. Roll, ?N, selects an integer pseudo-
randomly from the first N positive integers: 1=?5. Roll uses a starting
number termed the seed which is set initially to 16807 or 7+5 and is stored
with a workspace. The natural logarithm, @ N, computes log, N. The com-
mon logarithm, M® N, computes logy N:10®2=0.3010299957. Pi times,
ON, computes the mathematical value = times the operand: 3.141592654 =01.
The circular functions are expressed as JOX where: sin X =10X; cosX =20X;
tan X =30X; arcsin X="10X; arccos X'="20X; and arctan X="30X. For
example: 0.5=100+6.

Operators and operands can be combined to form compound expressions,
such as 2+ 3 x4, which has the value 14. Because of the multiplicity of
operators in APL, a strict right-to-left order of execution is adopted. For
example, 3x4+5 produces the value 27. Parentheses can be used to depart
from the normal order of execution so that (3 x4)+5 would produce a result
of 17.

Most operator symbols have monadic and dyadic counterparts. An oper-
ator is assumed to be monadic if the symbol to its immediate left is another
operator symbol. The operand to the left of a dyadic operator can be a
variable, a constant, or an expression in parentheses. The right operand to
either type of operator is the value of the entire expression to its right.

Arrays can have numeric or character components that cannot be mixed
within any one array. A numeric vector is specified as Vev, vy v5 ... v,,
where the v; are numeric constants: 4« "7 39 6. The monadic form of the
iota symbol, ¢V, is called the index generator and generates a vector of the
integers | through N (in l-origin indexing) and O through N—1 (in O-origin
indexing). A character vector is specified as C+'c,¢;...c,', where the ¢; are

characters from the APL alphabet including composite symbols’

C<+'ABC-12¢'. Each character is one component of a character array and

a series ofchdrdcters in quote symbols is termed a literal. A quote within
a literal is denoted by two quote marks. Arrays of higher dimension are gen-
erated with the reshape function, MgoN, where M specifies the size of the
result and N specifies the components. If N contains less than the required
number of components, it is used cyclically If it contains more, only the
required number are used. For example, M+ 3 4p1 specifies a matrix with 3
rows and 4 columns, all components of which are | A component of an
array may be selected or specified with a subscript A subscript is enclosed
in brackets and follows the array name. A single component is indicated by
an index for each coordinate of an array; indices, which may be scalars or
arrays, are separated by a semicolon. If A< 2 3p:6, then A[l;2]=2 and
A[2; 3]=4 5 6 Ifanindex is omitted, then an entire coordinate is selected:
A[;2]=2 5. Thus, A[l 2;2]=A[;2).

Primitive operations and mathematical functions, defined on scalars, are
extended to arrays on an element-by-element basis. If V< .6 and W+ 6p2,
then (V«W)=1 4 9 16 25 36. If either operand is a scalar, then it is ex-

316

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

148§

[B £V

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

APPENDIX E

tended to apply to all components of the other operand: (V+1)=234567.

The monadic form of p gives the size of an array and always produces a
vector result. Applied to a vector, pN produces a vector with one com-
ponent—the magnitude of which is the dimension of N. Applied to a matrix,
pN produces a vector where each component gives the dimension of one of
the coordinates of the array. The concept is extended to higher-dimensioned
arrays systematically. Thus, if V<77 3 9 6 5 4, then (pV)=6. Also, if
A<« 23p 16,then (pA4)=2 3.

The vectors can be catenated with the catenation operation: V,W where
(V. W) =(pV)+pW.

When arrays are generated from a vector using the reshape function, the
array is formed by lexicographic order of its subscripts. Similarly, an array
is raveled with the monadic form of the operator (,). If 442 3p ¢6, then
(b,A)=1 2 3 4 5 6. Also, if X< 5, then pX produces a null value. However,
(0,X)=1. Thus, ravel produces a vector result.

Dyadic operations are applied to the components of a single array with
the reduction operator: @/X=X[l|@X[2]®...@X[(pX)-1]®X[pX]. For
example: (+/6)=21. Here, the right-to-left rule is also applied. Reduction
is also applied to the Ith coordinate of an array 4 as follows' & /[/]4. The
ordinary matrix multiplication is a special case of the inner product expressed
as: C[I,J]=f/A[l,]gB[;J], where f and g are scalar dyadic operators. It is de-
noted in APL as 4fgB so that a matrix multiply of matrices 4 and B is
specified as 4 +.xB. A4 and B can be vectors, matrices, or higher-dimen-
sioned arrays. The familiar cartesian product is termed the outer product in
APL and expressed as: Ao.fB, where 4 and B are arrays and / is a scalar dy-
adic operation. Transposition exists in two forms. Monadic transposition,
{ M, interchanges the last two coordinates of the operand. Dyadic trans-
position, NQM, utilizes a left operand which specifies the coordinates that
are to be interchanged.

Camnnanente af o varntar IV ara
UL PUNLIVEIW UL @ Yuwwul 7 alv

A ;ith tha manads
1 L]

the operation is extended to higher-dimensioned arrays by specifying a co-
ordinate index: d)[l] V. The operation K¢ V rotates the vector left K places
if K is positive and right X places if K is negative. Applied to higher-dimen-
sioned arrays, KP[/]A also specifies the coordinate index; K may be a scalar
(and is extended to all dimensions or 4) or an array (where each component
of K specifies the rotation to be applied to the respective coordinate of 4).

Compression, U/V, uses a logical vector U and suppresses from V those
components that correspond to 0 components in /. When applied to a
higher-dimensioned array, an index, U /[I]4, specifies along which coordi-
nate compression is applied. Expansion provides the converse of compres-
sion and is expressed as U\V and U\[/]4 to correspond with the forms of
compression.

The function Tt V, called take, selects the first T components of V if T is
positive and the last T if T is negative. Similarly, drop, T ¥+ V, drops the first
T components or the last 7 components of V if T is positive or negative,
respectively.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
1950
i19i
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

PROSE GLOSSARY OF APL 317

The index of the first occurrence of a scalar S in a vector V is expressed
as V'« §. The concept is extended to right operands which are arrays and the

result assumes the size of the right operand. The membership function, SeV,

produces a value | if a scalar S is an element of a vector V and produces ¢
otherwise. The left operand, in this case, is extended to arrays and produces
a result of the same size.

The permutation of indices necessary to order a vector in ascending or
descending sequence is provided with the grade up and grade down func-
tions. Grade up is expressed as A V so that V[tfsV] produces V in ascending
order. Similarly, grade down, ¥ V, applied to V, that is ¥[¥ V], produces V
in descending order. The deal function, expressed as 4?B, produces a
vector of 4 components selected pseudo-randomly from B without
replacement.

Encode, written B1 4, produces the base ten value of the vector 4 to the
base B. Similarly, decode, written BTA, produces the vector of coefficients
to the base B necessary to decode the value 4.

In addition to primitive arithmetic operations, mathematical functions,
and functions on arrays, APL permits the user to define functions which are
not a part of the language and effectively to develop programs in the usual
sense. Function definition requires that the APL system leave the execution
mode, which is the normal mode of operation, and enter the definition mode.
In the definition mode, statements are not executed as they are entered but are
stored as part of a defined function. The syntax of a function is determined
by the function header, which is the opening statement and which gives a
prototype of the function. Defined functions can be: dyadic, 4 FCN B,
monadic, FCN A4; or niladic, FCN—where FCN is the function name and
A and B are arguments. Moreover, a function can produce an explicit result,
so that it can be used in a mathematical expression, or provide an implicit
result so that it must be invoked in a statement by itself. A function definition
consists of four kinds of constructs: (i) an opening V (del) symbol; (2) a
function header, such as R< X PLUS Y; (3) a function body containing the
statements that comprise the function; and (4) a final del symbol. Variables
may be specified as being local to a function by including them in the func-
tion header, each preceded by a semicolon.

Within a defined function, statements are numbered so that they may be
used as an operand t6 the monadic branch operation, written as >E, If E
is a scalar constant or variable, then the next statement executed is the one
with that number —if it exists. Otherwise, an exit is made from the function.
If E is a vector, then the statement with the number 14 £ is executed next.
If E'is an empty (null) vector, then the next statement in sequence is executed
——that is, control drops through the branch statement. Given variables X
and Y and relation r, the following statements branch to § or drop through
if XrY are true or false respectively: >(XrY)/S, >(XrY)pS, and >Sx.XrY.
Branching is facilitated through use of statement labels, which precede the
body of a statement and are separated from it with a colon and which are
local to the function definition.

318

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

717
&g

238
239
240
241
242

APPENDIX E

Function modification is achieved in a variety of ways, Statements can be
deleted, inserted, and replaced. The function header may be modified and
an entire function or parts of it can be displayed with one of several display
operations.

Program checkout is enhanced by a trace function and a stop control func-
tion. The trace function is invoked by a statement of the form TAFCN<V
where FCN is the function to be traced and V is a vector of statement num-
bers in FCN. The explicit value of designated statements is displayed and
identified as they are executed. The stop control function is invoked by.
SAFCN<V, where the FCN and V are defined above. Execution of an in-
voked function is stopped prior to the execution of designated statements.
When a function is stopped, facilities ordinarily available in the execution
mode are available to the user.

Halted functions arise in three ways: (1) as a result of a statement error
detected by the computer; (2) by pressing the ATTN key to halt execution;
and (3) by the stop control function. Execution may be resumed by branch-
ing, =8, to the next statement to be executed. Defined functions can invoke
other defined functions and the process is extended to as many levels as
required. A halted (or stopped) function is said to be a suspended function
and the functions that invoked the suspended function are termed pendent
functions. Pendent functions may not be modified. Suspended functions can
be modified and execution may proceed with the statement that was
modified.

The input operation can take two forms' evaluated input and character
input. Evaluated input is denoted by the quad symbol, [, and may be used
in any context that a constant or variable can be used The input provided
by the user is evaluated as though it were a part of the expression containing
the quad symbol. Character input uses the quote-quad symbol, [, and allows
a literal to be entered without the enclosing quole symbols. A quad or

nnnnnnnnn Aimmadinatalu tntha laft Afa cmanifin tAan Amaratar Aanntac ne
\.luUl.(a \.luau IIIIIIIGUIGLGIJ LWV illv IviIt VI a DPGUIII\-KJLIUII UPGI aLtvi JUuvilvivo Uull’“l

and is frequently used to display partial results of a complex expression.

APL achieves its greatest utility in three ways. (1) as an interactive desk
calculator; (2) as a programming system; and (3) as a means of describing
complex discrete systems. In the last case, the system description can be
verified with the APL system.

INDEX TO THE PROSE GLOSSARY OF APL

absolute value, 53
acoustical coupler, 5
addition, 41

and, 63

APL terminal system, |
arrays, 92

arrays of higher dimension, 101
branch, 197

cartesian product, 139
catenation operation, 124
ceiling, 52

character input, 235
character vector, 97
circular functions, 78
comparison operations, 55
compound expressions, 81
compression, |52
connectives, 63

dataset, 4

deal, 172

decode, 176

defined function, 184
definition mode, 183
deleted, 209

dimension, 119

division, 42

drop, 159

dyadic, 89, 186
element-by-element basis, 114
encode, 175

equal to, 57

evaluated input, 232
execution mode, 181

exit, 199

expansion, 155

explicit result, 188
exponential, 46
exponentiation, 42
factorial, 71

floor, 51

319

function body, 192
function definition, 181, 190
function header, 185, 192
function modification, 208
fuzz, 59
generalized combination, 70
grade down, 171
grade up, 170
greater than, 57
greater than or equal to, 57
halted function, 221
identity, 44
implicit result, 189
index, 109
index generator, 95
index of, 162
inner product, 135
input, 231
inserted, 209
lota, 95
less than, 56
less than or equal to, 57
literal, 100, 236
local, 194
logarithm

common, 75

natural, 75
matrix, 119
matrix multiplication, 135
maximum, 49
membership, 164
minimum, 50
monadic, 88, 187
multiplication, 42
name, 34
nand, 66
negation, 43
niladic, 187
nor, 67
not, 65

320 APPENDIX E

not equal to, 58
numeric constants, 26
numeric vector, 93
operators, 41

or, 64

outer product, 139
output, 237
parentheses, 84
pendent function, 227
pi times, 76

program checkout, 212
quad symbol, 232
quote-quad symbol, 235
ravel, 128, 130
reciprocal, 45
reduction, 132
replaced, 209

reshape function, 102, 126
residue, 54

reversal, 145

right operand, 90
right-to-left rule, 133

roll, 72
seed, 74
signum, 44
single component, 108
size, 117
statement, 16
branch, 21
specification, 16
statement labels, 205
stop control function, 216
subscript, 107
subtraction, 41
suspended function, 226
system command, 8, 10
take, 158
terminal session
initiate, 11
terminate, 11
trace function, 213
transposition, 141
two quote marks, 101
workspace, 39

INDEX

=
O
m

N
’

Absolute value, 86
Acoustical coupler, 60
Addition, 62
Algorithm, 22-24
characteristics, 23
deterministic nature, 23
Euclidean, 23
generality, 24
general nature, 22
American Standard Code for Infor-
mation Interchange, 10-13
And, 89
ANOV A, 278, 280, 281
APL-MANHATTAN, 267, 281
APL\ 360, 297-304
editing, 300
error reports, 301
specifications, 297
system commands, 301
system information, 298
workspace management, 299
Arithmetic operations, 46-56
fixed-point, 47-54
floating-point, 54-56
normalization, 54

323

Array, 16, 105

dimension, 106

generation, 123, 135

name, 106

size, 106
ASCII, see American Standard Code

for Information Interchange

Assembler, 218

ASCI(:N

card, 235

statement, 251
Assignment statement, 250
Associative memory, 243
ATTN key, 205, 206, 300
Augment, 142
Automatic mode, 76

B, 63

BACKSPACE key, 63

BACKSPACE statement, 255

Base value, [58-159, 163

Basic programming, 230

Batch processing, 231-233

Binary Coded Decimal (BCD), 10-13
BINOM, 274-275

324 INDEX

Blank line, 112
Branch, 190-194
Business, 294-295
CALL statement, 260
Carriage

indented, 63
Catenation, 113-115
Ceiling, 85
CHARACTER, 301
Character data, 117-119
Circular functions, 99
CLEAR, 302
CM, 277
Column major order, 121

COM, see Computer output micro-

film

Comment line

APL, 189

FORTRAN, 248
COMMON statement, 256
Comparison, 87
Compiler, 218, 230
COMPINT, 294-295
Component, 104, 123
Composite symbol, 63

in a literal, 117
Compression, 148-150, 161
Computer

applications, 5

arithmetic unit, 41-42

attached support processor, 222

capabilities and limitations, 6

control unit, 40

digital, 4

peripheral, 220

programming, 4

satellite, 221

storage unit, 39-40

terminal device, 10, 227
Computer output microfilm, 229
Computer system

acquisition, 219

design, 213-217

operation, 217-218

Conformable, 133
Constants, 64-67

accuracy, 66

characters used, 65

decimal form, 65

exponential form, 66

integer, 249

negative sign, 65

numeric, 64

real, 249
CONTINUE, 299, 301
CONTINUE statement, 253
Control

cards, 234

program, 235-237
Coordinate, 122-123, 128, 136
COPY, 300, 302
CPMI, 278, 280-287

Data
error, 14-16
management, 236
organization, 16

DATA button, 60

Dataset, 59

Deal, 157, 162

Decision logic table, 34-37
action entry, 35, 36
action stub, 35
condition entry, 35
condition stub, 35
extended entry, 36
limited entry, 36
mixed entry, 36
rule, 34

Decode, see Base value

Defined function, 69, 173-189
body, 176
definition mode, 174
display of, 184ff
dummy variables, 178
exit from, 190
explicit argument, 177ff
explicit result, 1761
function header, 176
implicit argument, | 771

Defined function, (continued)
implicit result, 177ff
list of, 183fF
local and global variables, 180
modification, 182-189
statement label, 195-196
statement number, 176
syntax, 176-180

Definition mode, 69, 75, 174

DEFN, 301

DEG, 293-294

Del, 174

DEPTH, 301

DET, 281, 288-289

DFT, 270

DIGITS, 297, 302

Dimension, 127

DIMENSION statement, 256

Discursive mathematics, 16

Division, 62

$ card, 235

DOMAIN, 30|

DO statement, 252-253

Drop, 153-154, 162

DROP, 300, 302

DSTAT, 271-272

Dynamic address translation, 242

e, 307
EBCDIC, see Extended Binary Coded
Decimal Interchange Code
Editing, 300-301
correct a line, 301
delete a character, 300
insert a character, 300
Edwards, E. M., 288
Element-by-element, 107, 120, 132,
136
Encode, see Representation
ENDFILE statement, 255
Equal, 87
EQUIVALENCE statement, 257
ERASE, 302
Error
absolute, 14
initial, 15
messages, 64

INDEX 325

propogated, 15

relative, 14

report, 301

rounding, 15

sources, 15

truncation, 15
Execution mode, 69, 75, 76
Expansion, 150-151, 161
Exponential, 84
Exponentiation, 62, 83
Expression, 249

compound, 77

structure of, 77
Extended Binary Coded Decimal In-

terchange Code, 10-13

EXTERNAL statement, 261

Factorial, 95
Falkoff, A. D., 59, 270
Fibonacci sequence, 114
Floor, 85
Flow chart, 27-34
macro, 28
micro, 28
program, 28
system, 28
Flow charting symbols,
basic, 28, 31

program, 28, 32
system, 30, 33
FNS, 302
FORMAT statement, 253, 254-255
FORTRAN, 246-261
Function, 173
built-in, 257
circular, see Circular functions
composite, 135, 308
defined, see Defined function
domain, 174
halted, 205
locked, 300
mathematical, 307
mixed, 135, 308
pendent, 206
primitive, 307
range, 174

326 INDEX

Function, (continued)
statement, 259
suspended, 206
trace, 207-209

Fuzz, 88, 307

Generalized combination, 94-95
GO TO statement, 251, 252
Grade down, 157, 162

Grade up, 156-157, 162
GRAPH, 268-271

Graph plotting, 268

Greater than, 87

Greater than or equal to, 87
GROUP, 300, 302

GRP, 302

Hierarchy, 249
HIST, 273-274
Hypervisor, 238

IBM Watson Research Center, 59
Identifier, 70, 247
statement, 247
variable, 247
Identity, 82
IF statement, 251, 252

Implied DO, 253-254
Index, 16, 104

generator, 111
order, 122, 124
INDEX, 301
Indexing, 127-132, 135
O-origin, 131
l-origin, 131
Indexing origin, 298
Index of, 155, 162
Indices, 128
Information, 3-4
codes, 10-13
coding, 9
Inner product, 137-139, 160
Input, 200-204
character, 203-204
evaluated, 202-203

loop, 201, 204
numeric, 200-202

Inpm /nutpl_!t devices, 224-229

=L

audio response unit, 229
graph plotters, 229
magnetic cards, 229
magnetic strips, 229
microfilm, 229
optical readers, 229
tape, 225
unit record, 224
work station, 229
Input/output systems, 232
Instruction stack, 214
INTEGRAL, 288, 291-292
Interactive computing, 58
INV, 281, 287-288
INVEST, 294-295
Iota, 110
Iteration, 197
Iverson, K. E., 57, 58

JOB card, 235

Job control, 233-237
block, 235

Job management, 236

Job monitor, 237

Keyboard, 61

LABEL, 301

Lamp symbol, 189

Language, 24, 25
assembler, 25
procedure-oriented, 25
programming, 25

LENGTH, 301

Less than, 87

Less than or equal to, 87

LiB, 302

Libraries, 299

Line width, 297

List, 253

Literal, 117

LOAD, 299, 302

LOAD card, 235

Logarithm, 96-97
common, 96
natural 96

Logical, 89

Loop, 197-200
body, 197, 198

initialization, 198

Machine operation, 43-46
execution cycle, 45
instruction cycle, 44-45
machine cycle, 43

Machine registers
accumulator, 43
address, 43
current address, 42
index, 42,43
instruction, 43
multiplier-quotient, 43
storage, 43

Mass storage, 224-229
disc, 226
drum, 227

Mathematics, 281, 288-294
calculus, 288
curve fitting, 281
matrix algebra, 281
utility, 293

Matrix, 105
generation, 123, 135

MAX, 289, 292-293

Maximum, 84

Membership, 156, 162

Method of leading decisions, 199

Minimum, 85

Mixed output, 119, 121

MSG, 303

MSGN, 303

Multiple arithmetic registers, 214

Multiplication, 62

Multiprocessing, 222

Multiprogramming, 238
level of, 238

MVSD, 272-273

Names, 297
Nand, 89, 90

INDEX

Negation, 81

Newman, W. R., 268, 281

Nor, 89, 90

Not, 89, 90

Not equal to, 87

Null value, 112

Number of digits, 297

Numbers, 6
accuracy, 8
biased exponent, 7
characteristic, 7
decimal, 6
exponent, 7
fixed-point, 6
floating-point, 7
fraction, 7
integer, 7
mantissa, 7
normalized, 8
range, 8
representation, 6

OFF, 299, 301
Onionskin method, 242
Operating system, 230, 237
Operator, 17-20, 61
arithmetic, 18
comparison, 19
degree of, 62
dyadic, 18
FORTRAN, 247
logical, 19
monadic, 18
primitive, 81
OPR, 303
OPRN, 303
Or, 89, 90
Order of operands, 99
ORIGIN, 298, 302
Outer product, 139-140, 160
Output, 205

Parentheses, 79, 249
PAUSE statement, 253
PCF, 281, 289-291
PCOPY, 302

327

328 INDEX

I1, 307

Pi times, 97

POISSON, 275-276

PORTS, 302

Power, 62, 83

Program, 24-27
applications packages, 218
checkout, 205-209
in APL, 76
main, 20
processing, 233
structure, 26
system control, 218
utility, 218

Quad, 200

nllnfaiflllnA M
UL Lll-la\-l, LI

RAD, 293-294

Rank, 127

RANK, 301

Ravel, 113, 134, 136

READ statement, 253, 254
Reciprocal, 83

Reduction, 115-117, 120, 137, 160
Relevance, 58

Remote terminal, 58
Representation, 159-160, 163
Reshape, 111

Residue, 91-92

Daculs
NGO UL

vector, 112
RETURN key, 62, 68, 201
RETURN statement, 261
Reversal, 144-145, 161
REWIND statement, 256
Rho, 111
Right-to-left order, 78
RND, 293-294
Roll, 96
Rotation, 145-147, 161
Rounding, 86
Routines
access, 237
catalog service, 237
common interrupt, 238
device management, 237

external storage management, 237

Row major order, 121
RUN card, 235

SAVE, 299, 302

Scalar, 16, 104

Scheduling, 244-246
exponential, 245
round robin, 245
schedule table, 245

SA, 209

Seed, 307

Selection, see Indexing

Semicolon, 110

Shape, 126, 135

S1, 302

SI DAMAGE, 301

S1G, 293-294

Sign-on, 298, 301

Signum, 82

SV, 302

Size, 127

Smillie, K. W., 271

Software, 218
interrupt, 237

Specification, 71-74, 119, 129
multiple, 80
respecification, 108

SPOOLing, 233

SR, 278-279

CQintamaant 274 M4 £1
DULALCITICHL, 45, 2V, U

APL, 68
control, 251
data manipulation, 26
declarative, 26
executable, 246
input and output, 26
input/output, 253
label, see Defined function
nonexecutable, 246
program control, 26
subprogram, 26

Statistics, 271-287
analysis of variance, 278
critical path, 278
descriptive, 271
probability and correlation, 274
regression, 278

STATPACK2, 271

Stop control, 209
STOP statement, 253
Storage management, 241-244
core resident, 242
fixed partition, 241
paging, 242
region allocation, 242
roll in/roll out, 242
swapping, 242
Storage organization
byte, 40
byte-addressable, 40
physical address, 40
storage address, 40
variable-length words, 40
word, 40
Subprogram
closed, 27
function, 27
in-line, 27
open, 27
out-of-line, 27
statement, 257-261
subroutine, 27
Subscript, 16, 17, 109, 120
Subtraction, 62
Supervisory systems, 233
SYMBOLTABLE FULL, 301
SYNTAX, 301
SYSTEM, 301
System command, 61, 68, 69
communications, 70
inquiry, 70
library control, 70
terminal control, 70
workspace control, 70
System management, 235

Take, 152-153, 162

TALK button, 60

Ta, 207

Terminal
device, 10, 227
preparation, 60
operating procedures, 60

Time sharing, 58, 238

INDEX

Transposition, 140-144, 161
dyadic, 142, 161

monadic, 141, 161

row-column, 141
Type statement, 256, 259

VALUE, 301

Value, limit, 197

Variable, 16, 70
array, see Array
control, 197
global, 180
local, 181
scalar, see Scalar
simple, 70
subscripted, 109-110
value of, 72

VARS, 302

Vector, 104
constant, 106
dimension of, 112, 120
empty, 111
formation, 113, 120
generation, 110, 120
reduction, see Reduction
size, 112

Virtual
machine, 240
storage system, 240

WIDTH, 297, 302

Workspace, 64
active, 64
name, 70, 71

Workspace management, 299-300

continue, 299
copy, 300
dropping, 299
groups, 300
libraries, 299
loading, 299
locked, 300
saving, 299
WRITE statement, 253, 254
WS FULL, 301
wSiD, 302

329

